Skip to main content

Advertisement

Log in

Lactandrate: a D-homo-aza-androsterone alkylator in the treatment of breast cancer

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Summary

The sensitivity of breast neoplasms to hormonal control provides the basis of novel investigational treatments with steroidal alkylators. An androsterone D-lactam steroidal ester, the 3β-hydroxy-13α-amino-13,17-seco- 5α-androstan-17-oic-13,17-lactam, p-bis(2-chloroethyl)amino phenyl acetate (lactandrate) was synthesized and tested for antitumor activity against six human breast cancer cell lines in vitro and against two murine and one xenograft mammary tumors in vivo. A docking study on the binding interactions of lactandrate with the ligand-binding domain (LBD) of estrogen receptor-alpha (ERα) was inquired. In vitro testing of lactandrate cytostatic and cytotoxic activity was performed on T47D, MCF7, MDA-MB-231, BT-549, Hs578T, MDA-MB-435 breast adenocarcinoma human cell lines. In vivo testing was performed on two murine mammary tumors, the MXT tumor and CD8F1 adenocarcinoma, as well as on human mammary carcinoma MX-1 xenograft. Molecular modeling techniques were adopted to predict a possible location and interaction mode of the molecule into LBD. Lactandrate induced significantly high antitumor effect against all tested in vitro and in vivo models. The cell lines with positive ER expression found to be significantly more sensitive to lactandrate. Moreover, lactandrate found to be positioned inside the binding cavity with its steroidal moiety, whilst the alkylating moiety protrudes out of receptor’s pocket. Lactandrate produced important anticancer activity on breast cancer in vitro and in vivo. Some correlation between ER and lactandrate effect was demonstrated. Docking studies provide the basis for the structure-based design of improved steroidal alkylating esters for the treatment of estrogen-related cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AF-2:

activation function 2

AWC:

average mice weight change

CR:

complete tumor regression rate

DMSO:

dimethyl sulfoxide

ER:

estrogen receptor

GI50:

50% growth inhibition

hERα:

human estrogen receptor alpha

IC50:

50% in vitro cytotoxicity

i.p.:

intra-peritoneal

LBD:

ligand-binding domain

MTD:

maximum tolerated dose

PKC:

protein kinase C

PR:

partial tumor regression rate

TGI:

total growth inhibition

TFS:

tumor-free survivors

TI:

tumor inhibition

TW:

tumor weight

%T/C:

% median lifespan change of treated animals (T) over the control (C)

References

  1. Wong ZW, Ellis MJ, First-line endocrine treatment of breast cancer: aromatase inhibitor or antioestrogen? Br J Cancer 90: 20–25, 2004

    Article  CAS  PubMed  Google Scholar 

  2. Mouridsen HT, Rose C, Brodie AH, Smith IE, Challenges in the endocrine management of breast cancer Breast 2(Suppl): S2–19, 2003

    Article  Google Scholar 

  3. Catsoulacos P, Politis D, Wampler GL, A new steroidal alkylating agent with improved activity in advanced murine leukemias Cancer Chemother Pharmacol 3: 67–70, 1979

    Article  CAS  PubMed  Google Scholar 

  4. Catsoulacos P, Camoutsis C, Wampler GL, Effect of a Δ5-homo-aza-steroidal ester in P388 and L1210 murine leukemias Oncology 39: 59–60, 1982

    CAS  PubMed  Google Scholar 

  5. Catsoulacos P, Activity of 3β-hydroxy-13α-amino-13,17-seco-5α-androstan-17-oic-13, 17-lactam p-bis (2-chloroethyl)aminophenoxy acetate (NSC-294859) on experimental tumor and leukemia systems. Oncology 40: 290–292, 1983

    Article  CAS  PubMed  Google Scholar 

  6. Catsoulacos P, Wampler GL, Activity of 3β-hydroxy-13α-amino-13,17-seco-5α-androstan-17-oic-13,17-lactam(p-bis(2-chloroethyl)amino)-phenyl)acetate (NSC-290205) in murine solid tumors Oncology 39: 109–112, 1982

    CAS  PubMed  Google Scholar 

  7. Catsoulacos P, Further studies on the anti-neoplastic activity of 3β-hydroxy-13α-amino-13,17-seco-5α-androstan-17-oic-13,17-lactam(p-bis(2-chloroethyl)amino)phenyl)acetate (NSC-290205). Cancer Lett 22: 199–202, 1984

    Article  CAS  PubMed  Google Scholar 

  8. Wall ME, Abernethy SG, Carroll JFI, Taylor DJ, The effects of some steroidal alkylating agents on experimental animal mammary tumor and leukemia systems J Med Chem 12: 810–818, 1969

    Article  CAS  PubMed  Google Scholar 

  9. Wampler GL, Catsoulacos P, Antileukemic effect of homo-aza-steroidal-ester of [p-[bis(2-chloroethyl)amino]acetic acid Cancer Treat Rep 61: 37–41, 1977

    CAS  PubMed  Google Scholar 

  10. Tsai M-J, O’Malley BW, Molecular mechanisms of action of steroid/thyroid receptor superfamily members Annu Rev Biochem 63: 451–486, 1994

    Article  CAS  PubMed  Google Scholar 

  11. Beato M, Sanchez-Pacheco A, Interaction of steroid hormone receptors with the transcription initiation complex Endocr Rev 17: 587–609, 1996

    Article  CAS  PubMed  Google Scholar 

  12. Shiau AK, Barstad D, Loria M, Cheng L, Kushner PJ, Agard DA, Greene GL ,The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen Cell 95: 927–937, 1998

  13. Catsoulacos P, Boutis L, Aza-steroids. Beckmann rearrangement of 3β-acetoxy-5α-androstan-17-one oxime acetate with boron fluoride. Alkylting agents. Chim Ther 8: 215–217, 1973

    CAS  Google Scholar 

  14. Finlay GJ, Wilson WR, Baguley BC, Comparison of in vitro activity of cytotoxic drugs towards human carcinoma and leukaemia cell lines Eur J Cancer Clin Oncol 22: 655–662, 1986

    Article  CAS  PubMed  Google Scholar 

  15. Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MJ, Fine DL, Abbott BJ, Mayo JG, Shoemaker RH, Boyd MR, Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay Cancer Res, 48: 589–601, 1988

    CAS  Google Scholar 

  16. Boyd MR, Paull KD, Some practical considerations and applications of the National Cancer Institute in vitro anticancer drug discovery screen Drug Devel Res 34: 91–109, 1995

    Article  CAS  Google Scholar 

  17. Francisco J, Pauwels Ο, Simon S, Gasperin P, Van Houtte P, Pasteels JL, Kiss R, Computer-assisted morphonuclear characterization of radiotherapy-induced effects in MXT mouse mammary adenocarcinomas surviving earlier radiotherapy Int J Radiat Oncol Biol Phys 32: 409–419, 1995

    Article  CAS  PubMed  Google Scholar 

  18. Danguy A, Kiss R, Leclercq G, Heuson JC, Pasteels JL, Morphology of MXT mouse mammary tumors. Correlation with growth characteristics and hormone sensitivity Eur J Cancer Clin Oncol 22: 69–76, 1986

    Article  CAS  PubMed  Google Scholar 

  19. Martin DS, Fugmann RA, Stolfi RL, Hayworth PE, Solid tumor animal model therapeutically predictive for human breast cancer Cancer Chemother Rep 5: 89–109, 1975

    Google Scholar 

  20. Goldin A, Vendi JM, MacDonald JS, Muggia FM, Henney JE, DeVita VT Jr, Current results of the screening program at the Division of Cancer Treatment, National Cancer Institute Eur J Cancer, 17: 129–142, 1981

    CAS  PubMed  Google Scholar 

  21. Stolfi RL, Martin DS, Fugmann RA, Spontaneous mutine mammary adenocarcinoma: model system for evaluation of combined methods of therapy Cancer Chemother Rep 55: 239–251, 1971.

    CAS  PubMed  Google Scholar 

  22. NIH Principles of laboratory animal care. NIH publication 85: 23, 1985

    Google Scholar 

  23. Workman P, Twentyman P, Balkwill F, Balmain A, Chaplin D, Double J, Embleton J, Newell D, Raymond R, Stables J, Stephens T, Wallace J, United Kingdom Co-ordinating Committee on Cancer Research (UKCCCR) guidelines for the welfare of animals in experimental neoplasia (second edition) Br J Cancer 77: 1–10, 1998

    Google Scholar 

  24. Carosati E, Sciabola S, Gabriele C, Hydrogen bonding interactions of covalently bonded fluorine atoms: from crystallographic data to a new angular function in the GRID force field J Med Chem 47: 5114–5125, 2004

    Article  CAS  PubMed  Google Scholar 

  25. Goodford PJ, 1985 A computational procedure for determining energetically favourable binding sites on biologically important macromolecules J Med Chem 28: 849–857

    Article  CAS  PubMed  Google Scholar 

  26. Brozowski AM, Pike ACW, Dauter Z, Hubbard RE, Bonn T, Engström O, Öhman L, Greene GL, Gustafsson JÅ, Carlquist M, 1997 Molecular basis of agonism and antagonism in the oestrogen receptor Nature 389: 753–758

    Article  CAS  Google Scholar 

  27. Boyer S, Zamora I, New methods in predicting metabolism J Comput-Aided Mol Des 16: 403–413, 2002

    Article  CAS  PubMed  Google Scholar 

  28. Zamora I, Afzelius L, Cruciani G, Predicting drug metabolism: a site of metabolism prediction tool applied to the cytochrome P450 2C9 J Med Chem 46: 2313–2324, 2003

    Article  CAS  PubMed  Google Scholar 

  29. Boobis A, Gundert-Remy U, Kremers P, Macheras P, Pelkonen O, In silico prediction of ADME and pharmacokinetics. Report of an expert meeting organised by COST B15 Eur J Pharm Sci 17: 183–193, 2002

    Article  CAS  PubMed  Google Scholar 

  30. Wrighton SA, Schuetz EG, Thummel KE, Shen DD, Korzekwa KR, Watkins PB, The human CYP3A subfamily: practical considerations Drug Metab Rev 32: 339–361, 2000

    Article  CAS  PubMed  Google Scholar 

  31. Guengerich FP, 2001 Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity Chem Res Toxicol 14: 611–650

    Article  CAS  PubMed  Google Scholar 

  32. Crivori P, Zamora I, Speed B, Orrenius C, Poggesi I, Model based on GRID-derived descriptors for estimating CYP3A4 enzyme stability of potential drug candidates J Comput-Aid Mol Des 18: 155–166, 2004

    Article  CAS  Google Scholar 

  33. Renaud J, Bischoff SF, Buhl T, Floersheim P, Fournier B, Halleux C, Kallen J, Keller H, Schlaeppi J-M, Stark W, Estrogen receptor modulators: identification and structure-relationships of potent ER-selective tetrahydroisoquinoline ligands J Med Chem 46: 2945–2957, 2003

    Article  CAS  PubMed  Google Scholar 

  34. Kekenes-Huskey PM, Muegge I, Rauch M, Gust R, Knapp E-W, A molecular docking study of estrogenically active compounds with 1,2-diarylethane and 1,2-diarylethene pharmacophores Bioorg Med Chem 12: 6527–6537, 2004

    Article  CAS  PubMed  Google Scholar 

  35. Jones KL, Buzdar AU, Jones KL, Buzdar AU, A review of adjuvant hormonal therapy in breast cancer Endocr Relat Cancer 11: 391–406, 2004

    Article  CAS  PubMed  Google Scholar 

  36. Leclercq G, Devleeschouwer N, Pairas G, Camoutsis C, Catsoulacos P, Effect of an homo-aza-steroid on estrogen receptor Meth Find Exp Clin Pharmacol 5: 365–367, 1983

    CAS  Google Scholar 

  37. Cho W-J, Min SY, Le TN, Kim TS, Synthesis of new 3-arylsoquinolinamines: effect on topoisomerase I inhibition and cytotoxicity Bioorg Med Chem Lett 13: 4451–4454, 2003

    Article  CAS  PubMed  Google Scholar 

  38. De la Fuente JA, Manzanaro S, Martin MJ, de Quesada TG, Reymundo I, Luengo SM, Gago F, Synthesis, activity, and molecular modeling studies of novel human aldose reductase inhibitors based on a marine natural product J Med Chem 46: 5208–5221, 2003

    Article  CAS  Google Scholar 

  39. Sarno S, de Moliner E, Ruzzene M, Pagano MA, Battistuta R, Bain J, Fabbro D, Schoepfer J, Elliott M, Furet P, Meggio F, Zanotti G, Pinna LA, Biochemical and three-dimensional-structural study of the specific of protein kinase CK2 by [5-oxo-5,6-dihydroindolo-(1,2-a)quinazolin-7-yl]acetic acid (IQA) Biochem J 374: 639–646, 2003

    Article  CAS  PubMed  Google Scholar 

  40. Tzukerman MT, Esty A, Santiso-Mere D, Danelian D, Parker MG, Stein RB, Pike JW, McDonnell DP, Human estrogen receptor transactivational capacity is determined by both cellular and promoter context and mediated by two functionally distinct intramolecular regions Mol Endocrinol 8: 21–30, 1994

    Article  CAS  PubMed  Google Scholar 

  41. Kabara JJ, Holzschu DL, Catsoulacos P, Structure function activity of azasterols and nitrogen containing steroids Lipids 11: 7555–7562, 1976

    Article  Google Scholar 

  42. Tsuchiya Y, Nakajima M, Yokoi T, Cytochrome P450-mediated metabolism of estrogens and its regulation in human Cancer Lett 20: 1–10, 2004

    Google Scholar 

  43. Torimoto N, Ishii I, Hata M, Nakamura H, Imada H, Ariyoshi N, Ohmori S, Igarashi T, Kitada M, 2003 Direct interaction between substrates and endogenous steroids in the active site may change the activity of cytochrome P450 3A4 Biochemistry 42: 15068–15077

    Article  CAS  PubMed  Google Scholar 

  44. Szklarz GD, Halpert JR, 1997 Molecular modeling of cytochrome P450 3A4 J Comput Aided Mol Des 1: 265–272

    Article  Google Scholar 

  45. Papageorgiou A, Ivanov IG, Markov GG, Koliais SI, Boutis L, Catsoulacos P, Interaction of homo-aza-steroidal ester of [p-[bis-(2-chloroethyl) amino] acetic acid (ASE) with DNA of Ehrlich ascites tumor cells FEBS Lett 153: 194–198, 1983

    Article  CAS  PubMed  Google Scholar 

  46. Shepherd RE, Huff K, McGuire WL, Brief communication: estrogen receptor interaction with antitumor agent estradiol mustard J Nat Cancer Inst 53: 895–897, 1974

    CAS  PubMed  Google Scholar 

  47. Kubota T, Kawamura E, Suzuki T, Yamada T, Toyoda H, Miyagawa T, Kurokawa T,Antitumor activity and pharmacokinetics of estra-1,3,5 (10)-triene-3,17 beta-diol, 3-benzoate, 17-((4-(4-bis(2-chloroethyl)amino)phenyl)-1-oxobutoxy) acetate) (Bestrabucil) in human tumor xenografts serially transplanted into nude mice Jpn J Clin Oncol 16: 357–564, 1986

    CAS  PubMed  Google Scholar 

  48. Catsoulacos P, Catsoulacos D, Antitumor activity of homo-aza-steroidal esters of p-N,N-bis(2-chloroethyl) amino phenoxy acetic acid Anticancer Res 13: 1203–1208, 1993

    CAS  PubMed  Google Scholar 

  49. Camoutsis C, Trafalis DTP, An overview on the antileukemic potential of D-homo-aza- and respective 17β-acetamido-steroidal alkylating esters Invest New Drugs 21: 47–54, 2003

    Article  CAS  PubMed  Google Scholar 

  50. Trafalis DTP, Camoutsis C, Dalezis P, Papageorgiou A, Kontos M, Karamanakos P, Giannakos G, Athanassiou AE, Antitumour effect of A- and D-lactam androgen nitrogen mustards on non-small cell lung carcinoma J BUON 9: 75–82, 2004

    Google Scholar 

  51. Ma D, Wang G, Wang S, Kozikowski AP, Lewin NE, Blumberg PM, Synthesis and protein kinase C binding activity of benzolactam-V-7 Bioorg Med Chem Lett 9: 1371–1374, 1999

    Article  CAS  PubMed  Google Scholar 

  52. Endo Y, Shimazu M, Fukasawa H, Driedger PE, Kimura K, Tomioka N, Itai A, Shudo K, Synthesis computer modelling and biological evaluation of novel protein kinase C agonists based on a 7-membered lactam moiety Bioorg Med Chem Lett 9: 173–178, 1999

    Article  CAS  PubMed  Google Scholar 

  53. Endo Y, Yokohama A, Role of the hydrophobic moiety of tumor promoters. Synthesis and activity of 2-alkylated benzolactams Bioorg Med Chem Lett 10: 63–66, 2000

    Article  CAS  PubMed  Google Scholar 

  54. Trafalis DTP, Camoutsis C, Karamanakos P, Arvanitis A, Tegou E, Ziras N, Athanassiou AE, Preclinical evaluation of the homo-aza-steroidal ester: 13β-hydroxy-13α-amino-13,17-seco-5α-androstan-17-oic-13,17-lactam-p-bis(2-chloro ethyl) aminophenoxy acetate for the treatment of malignant melanoma J BUON 8: 333–339, 2003

    CAS  PubMed  Google Scholar 

  55. Catsoulacos P, Politis D, Wampler GL, Antitumor activity of homo-aza-steroidal esters of [p-bis(2-chloroethyl)amino]phenyl]acetic acid [p-bis(2-chloroethyl)amino] phenyl]butyric acid Cancer Chemother Pharmacol 10: 129–132, 1983

    Article  CAS  PubMed  Google Scholar 

  56. Catsoulacos P, Camoutsis C, Papageorgiou A, Adamiak-Margariti E, Cytostatic effect of homo-aza-steroidal esters in vivo and in vitro structure–activity relationships Anticancer Res 12: 1617–1620, 1992

    CAS  PubMed  Google Scholar 

  57. Dalmases P, Gomez-Belinchon JI, Bonet J-J, Giner-Sorolla A, Schmid FA, Antineoplastic agents II. A nitrogen mustard derivative of N-methylated steroidal lactam Eur J Med Chem 18: 541–543, 1983

    CAS  Google Scholar 

  58. Dalmases P, Cervantes G, Quintana J, Bonet J-J, Antineoplastic agents. V. Nitrogen mustards of systematically modified steroidal ring A lactams Eur J Med Chem 19, 465–467, 1984

    CAS  Google Scholar 

  59. Catsoulacos P, Papageorgiou A, Margariti E, Mourelatos D, Mioglou E, Comparison of current alkylating agents with a homo-aza-steroidal ester for antineoplastic activity Oncology 51: 74–78, 1994

    CAS  PubMed  Google Scholar 

  60. Tiersten AD, Nelsen C, Talbot S, Vahdat L, Fine R, Troxel A, Brafman L, Shriberg L, Antman K, Petrylak DP, A phase II trial of docetaxel and estramustine in patients with refractory metastatic breast carcinoma Cancer 97: 537–544, 2003.

    Article  CAS  PubMed  Google Scholar 

  61. Ζelek L, Βarthier S, Riofrio M, Sevin D, Fizazi K, Spielmann M, Single-agent estramustine phosphate (EMP) is active in advanced breast cancer after failure with anthracyclines and taxanes Ann Oncol 12: 1265–1268, 2001

    Article  Google Scholar 

  62. Kubota T, Abe O, Izuo M, Watanabe H, Enomoto K, Ohsawa N, Kuno K, A phase II multi-institutional study of estra-1,3,5(10)-triene-3,17 beta-diol, 3-benzoate, 17[[4-[4-[bis(2-chloroethyl)amino]phenyl]-1- oxobutoxy]acetate] (KM2210), a novel antitumor agent, for advanced and recurrent breast carcinoma Anticancer Res 13: 2361–2365, 1993

    CAS  PubMed  Google Scholar 

  63. Kubota T, Ishibiki K, Abe O, Kosano H, Ohsawa N, Hoffman RM, Mode of action of estra-1,3,5(10)-triene-3, 17 beta-diol, 3-benzoate, 17[4-[4-[bis(2-chloroethyl) amino]phenyl]-1-oxobutoxy] acetate] (KM2210) on MCF-7 human breast tumours transplanted into nude mice Anticancer Res 13: 935–940, 1993

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been accomplished with the experimental and technical support of the Developmental Therapeutics Program, National Cancer Institute (NCI, USA).

We are grateful to Professor Gabriele Cruciani (Laboratory for Chemometrics, School of Chemistry, University of Perugia, Italy) for the permission to use GRID (v. 22) Linux, free of charge (www.moldiscovery.com).

This study is dedicated to the memory of Professor P. Catsoulacos and Professor G. Wampler.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios T.P. Trafalis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trafalis, D.T., Geromichalos, G.D., Koukoulitsa, C. et al. Lactandrate: a D-homo-aza-androsterone alkylator in the treatment of breast cancer. Breast Cancer Res Treat 97, 17–31 (2006). https://doi.org/10.1007/s10549-005-9083-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-005-9083-x

Keywords

Navigation