Skip to main content
Log in

On the Quantization of Time-Varying Phase Synchrony Patterns into Distinct Functional Connectivity Microstates (FCμstates) in a Multi-trial Visual ERP Paradigm

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

The analysis of functional brain connectivity has been supported by various techniques encompassing spatiotemporal interactions between distinct areas and enabling the description of network organization. Different brain states are known to be associated with specific connectivity patterns. We introduce here the concept of functional connectivity microstates (FCμstates) as short lasting connectivity patterns resulting from the discretization of temporal variations in connectivity and mediating a parsimonious representation of coordinated activity in the brain. Modifying a well-established framework for mining brain dynamics, we show that a small sized repertoire of FCμstates can be derived so as to encapsulate both the inter-subject and inter-trial response variability and further provide novel insights into cognition. The main practical advantage of our approach lies in the fact that time-varying connectivity analysis can be simplified significantly by considering each FCμstate as prototypical connectivity pattern, and this is achieved without sacrificing the temporal aspects of dynamics. Multi-trial datasets from a visual ERP experiment were employed so as to provide a proof of concept, while phase synchrony was emphasized in the description of connectivity structure. The power of FCμstates in knowledge discovery is demonstrated through the application of network topology descriptors. Their time-evolution and association with event-related responses is explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. http://users.auth.gr/~stdimitr/software.html.

References

  • Astolfi L, Cincotti F, Mattia D, Fallani VV, Tocci A, Colosimo A, Salinari S, Marciani MG, Hesse W, Witte H, Ursino M, Zavaglia M, Babiloni F (2008) Tracking the time-varying cortical connectivity patterns by adaptive multivariate estimators. IEEE Trans Biomed Eng 55:902–913

    Article  PubMed  CAS  Google Scholar 

  • Bassett DS, Wymbs NF, Porter MA, Mucha PJ, Carlson JM, Grafton ST (2011) Dynamic reconfiguration of human brain networks during learning. Proc Natl Acad Sci 108(18):7641–7646

    Article  PubMed  CAS  Google Scholar 

  • Bezdec JC (1981) Pattern recognition with fuzzy objective function algorithms. Plenum Press, New York

    Book  Google Scholar 

  • Breakspear M, Williams LM, Stam CJ (2004) A novel method for the topographic analysis of neural activity reveals formation and dissolution of ‘dynamic cell assemblies’. J Comput Neurosci 16:49–68

    Article  PubMed  Google Scholar 

  • Britz J, Landis T, Michel CM (2009) Right parietal brain activity precedes perceptual alternation of bistable stimuli. Cereb Cortex 19:55–65

    Article  PubMed  Google Scholar 

  • Britz J, Van De Ville D, Michel CM (2010) BOLD correlates of EEG topography reveal rapid resting-state network dynamics. Neuroimage 52:1162–1170

    Article  PubMed  Google Scholar 

  • Buschman TJ, Miller EK (2007) Top‐down versus bottom‐up control of attention in the prefrontal and posterior parietal cortices. Science 315:1860–1862

    Article  PubMed  CAS  Google Scholar 

  • Cabeza R, Nyberg L (2000) Imaging cognition. II. An empirical review of 275 PET and fMRI studies. J Cogn Neurosci (Review) 12:1–47

    Article  CAS  Google Scholar 

  • Cohen MX, Axmacher N, Lenartz D, Elger CE, Sturm V, Schlaepfer TE (2009) Nuclei accumbens phase synchrony predicts decision-making reversals following negative feedback. J Neurosci 29:7591–7598

    Article  PubMed  CAS  Google Scholar 

  • Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics. J Neurosci Methods 134:9–21

    Article  PubMed  Google Scholar 

  • DeVico Fallani V, Latora V, Astolfi L, Cincotti F, Mattia D, Marciani MG et al (2007) Persistent patterns of interconnection in time-varying cortical networks estimated from high-resolution EEG recordings in humans during a simple motor act. J Phys A Math Theor 41:224014

    Article  Google Scholar 

  • Dimitriadis SI, Laskaris NA, Del Rio-Portilla Y, Koudounis GC (2009) Characterizing dynamic functional connectivity across sleep stages from EEG. Brain Topogr 22(2):119–133

    Article  PubMed  Google Scholar 

  • Dimitriadis SI, Laskaris NA, Tsirka V, Vourkas M, Micheloyannis S, Fotopoulos S (2010) Tracking brain dynamics via time-dependent network analysis. J Neurosci Methods 193(1):145–155

    Article  PubMed  Google Scholar 

  • Dimitriadis SI, Laskaris NA, Tsirka V, Erimaki S, Vourkas M, Micheloyannis S, Fotopoulos S (2012a) A novel symbolization scheme for multichannel recordings with emphasis on phase information and its application to differentiate EEG activity from different mental tasks. Cogn Neurodyn 6(1):107–113

    Article  PubMed  Google Scholar 

  • Dimitriadis SI, Laskaris NA, Tzelepi A, Economou G (2012b) Analyzing functional brain connectivity by means of commute times: a new approach and its application to track event-related dynamics. IEEE Trans Biomed Eng 59(5):1302–1309

    Article  PubMed  CAS  Google Scholar 

  • Dimitriadis SI, Kanatsouli K, Laskaris NA, Tsirka V, Vourkas M, Micheloyannis S (2012c) Surface EEG shows that functional segregation via phase coupling contributes to the neural substrate of mental calculations. Brain Cogn 80(1):45–52

    Article  PubMed  Google Scholar 

  • Dimitriadis SI, Laskaris NA, Tsirka V, Vourkas M, Micheloyannis S (2012d) An EEG study of brain connectivity dynamics at the resting state. Nonlinear Dynamics Psychol Life Sci 16(1):5–22

    PubMed  Google Scholar 

  • Donner TH, Siegel M (2011) A framework for local cortical oscillation patterns. Trends Cogn Sci 15:191–199

    Article  PubMed  Google Scholar 

  • Freeman WJ, Burke BC, Homes MD (2003) Aperiodic phase-resetting in scalp EEG of beta-gamma-oscillations by state transitions at alpha-theta-rates. Hum Brain Map 19:248–272

    Article  Google Scholar 

  • Freeman WJ (2004a) Origin, structure, and role of background EEG activity, Part 1: analytic amplitude. Clin Neurophysiol 115:2077–2088

    Article  PubMed  Google Scholar 

  • Freeman WJ (2004b) Origin, structure, and role of background EEG activity, Part 2: analytic phase. Clin Neurophysiol 115:2089–2107

    Article  PubMed  Google Scholar 

  • Freeman WJ (2005) Origin, structure, and role of background EEG activity, Part 3: neural frame classification. Clin Neurophysiol 116:1118–1129

    Article  PubMed  Google Scholar 

  • Freeman WJ (2006) Origin, structure, and role of background EEG activity, Part 4: neural frame simulation. Clin Neurophysiol 117:572–589

    Article  PubMed  Google Scholar 

  • Freeman WJ, Rogers LJ (2002) Fine temporal resolution of analytic phase reveals episodic synchronization by state transitions in gamma EEGs. J Neurophysiol 87:937–945

    PubMed  Google Scholar 

  • Fries P, Reynolds JH, Rorie AE, Desimone R (2001) Modulation of oscillatory neuronal synchronization by selective visual attention. Science 1:1560–1563

    Article  Google Scholar 

  • Friston KJ (2000a) The labile brain. I. Neuronal transients and nonlinear coupling. Philos Trans R Soc Lond B Biol Sci 355:215–236

    Article  PubMed  CAS  Google Scholar 

  • Friston KJ (2000b) The labile brain. II. Transients, complexity and selection. Philos Trans R Soc Lond B Biol Sci 355:237–252

    Article  PubMed  CAS  Google Scholar 

  • Friston KJ (2000c) The labile brain. III. Transient and spatio-temporal receptive fields. Philos Trans R Soc Lond B Biol Sci 355:253–265

    Article  PubMed  CAS  Google Scholar 

  • Hipp JF, Andreas KA, Siegel M (2011) Oscillatory synchronization in large-scale cortical networks predicts perception. Neuron 69:387–396

    Article  PubMed  CAS  Google Scholar 

  • Ioannides AA, Dimitriadis SI, Saridis G, Voultsidou M, Poghosyan V, Liu L, Laskaris NA (2012) Source space analysis of event-related dynamic reorganization of brain networks. Comput Math Methods Med 2012:452503

  • Ito J, Nikolaev AR, van Cees L (2007) Dynamics of spontaneous transitions between global brain states. Hum Brain Mapp 25:904–913

    Article  Google Scholar 

  • Kaplan AY, Fingelkurts AA, Fingelkurts AA, Borisov SV, Darkhovsky BS (2005) Nonstationary nature of the brain activity as revealed by EEG/MEG: methodological, practical and conceptual challenges. Signal Process 85:2190–2212

    Article  Google Scholar 

  • Lachaux JP, Rodriguez E, Martinerie J, Varela FJ (1999) Measuring phase synchrony in brain signals. Hum Brain Mapp 8:194–208

    Article  PubMed  CAS  Google Scholar 

  • Laskaris NA, Ioannides AA (2002) Semantic geodesic maps: a unifying geometrical approach for studying the structure and dynamics of single trial evoked responses. Clin Neurophysiol 113(8):1209–1226

    Article  PubMed  CAS  Google Scholar 

  • Laskaris N, Fotopoulos S, Ioannides AA (2004) Mining information from event related recordings. IEEE Signal Process Mag 21:66–77

    Article  Google Scholar 

  • Latora V, Marchiori M (2001) Efficient behaviour of small-world networks. Phys Rev Lett 87:198701

    Article  PubMed  CAS  Google Scholar 

  • Lehmann D, Ozaki H, Pal I (1987) EEG alpha map series: brain micro-states by space-oriented adaptive segmentation. Electroencephalogr Clin Neurophysiol 67:271–288

    Article  PubMed  CAS  Google Scholar 

  • Lehmann D, Strik WK, Henggeler B, Koenig T, Koukkou M (1998) Brain electric microstates and momentary conscious mind states as building blocks of spontaneous thinking: I. Visual imagery and abstract thoughts. Int J Psychophysiol 29:1–11

    Article  PubMed  CAS  Google Scholar 

  • Lehmann D, Faber PL, Galderisi S, Herrmann WM, Kinoshita T, Koukkou M, Mucci A, Pascual-Marqui RD, Saito N, Wackermann J, Winterer G, Koenig T (2005) EEG microstate duration and syntax in acute, medication-naive, first-episode schizophrenia: a multi-center study. Psychiatry Res Neuroimaging 138:141–156

    Article  Google Scholar 

  • Lehmann D, Pascual-Marqui RD, Strik WK, Koenig T (2010) Core networks for visual-concrete and abstract thought content: a brain electric microstate analysis. Neuroimage 49:1073–1079

    Article  PubMed  Google Scholar 

  • Martinez T, Berkovich S, Schulten K (1993) Neural-gas network for vector quantization and its application to time-series prediction. IEEE Trans Neural Netw 4:558–569

    Article  Google Scholar 

  • McDowell JE, Kissler JM, Berg P, Dyckman KA, Gao Y, Rockstroh B et al (2005) Electroencephalography/magnetoencephalography study of cortical activities preceding prosaccades and antisaccades. Neuroreport 16:663–668

    Article  PubMed  Google Scholar 

  • Meila M (2007) Comparing clusterings-an information based distance. J Multivar Anal 98:873–895

    Article  Google Scholar 

  • Mesulam MM (1998) From sensation to cognition. Brain 121:1013–1052

    Article  PubMed  Google Scholar 

  • Michel CM, Seeck M, Landis T (1999) Spatio-temporal dynamics of human cognition. News Physiol Sci 14:206–214

    PubMed  Google Scholar 

  • Mitchell DJ, McNaughton N, Flanagan D, Kirk IJ (2008) Frontal-midline theta from the perspective of hippocampal “theta”. Prog Neurobiol 86:156–185

    Article  PubMed  Google Scholar 

  • Mohr C, Michel CM, Lantz G, Ortigue S, Viaud-Delmon I, Landis T (2005) Brain state-dependent functional hemispheric specialization in men but not in women. Cereb Cortex 15:1451–1458

    Article  PubMed  Google Scholar 

  • Müller TJ, Koenig T, Wackermann J, Kalus P, Fallgatter A, Strik W, Lehmann D (2005) Subsecond changes of global brain state in illusory multistable motion perception. J Neural Transm 112:1435–1463

    Google Scholar 

  • Musso F, Brinkmeyer J, Mobascher A, Warbrick T, Winterer G (2010) Spontaneous brain activity and EEG microstates. A novelEEG/fMRI analysis approach to explore resting-state networks. Neuroimage 52:1149–1161

    Article  PubMed  CAS  Google Scholar 

  • Nakatani C, Ito J, Nikolaev AR, Gong PL, van Leeuwen C (2005) Phase synchronization analysis of EEG during attentional blink. J Cogn Neurosci 17:1969–1979

    Article  PubMed  Google Scholar 

  • Newman MEJ (2006) Modularity and community structure in networks. Proc Natl Acad Sci USA 103(23):8577–8582

    Article  PubMed  CAS  Google Scholar 

  • Nolte G, Ziehe A, Nikulin VV, Schlögl A, Krämer N, Brismar T, Muller KR (2008) Robustly estimating the flow direction of information in complex physical systems. Phys Rev Lett 00(23):234101

    Article  Google Scholar 

  • Ossadtchi A, Greenblatt RE, Towle VL, Kohrman MH, Kamada K (2010) Inferring spatiotemporal network patterns from intracranial EEG data. Clin Neurophysiol 121:823–835

    Article  PubMed  CAS  Google Scholar 

  • Pavan M, Pelillo M (2007) Dominant sets and pairwise clustering. IEEE Trans PAMI 29(1):167–172

    Article  Google Scholar 

  • Pesaran B, Nelson MJ, Andersen RA (2008) Free choice activates a decision circuit between frontal and parietal cortex. Nature 453:406–409

    Article  PubMed  CAS  Google Scholar 

  • Sauseng P, Klimesch W (2008) What does phase information of oscillatory brain activity tell us about cognitive processes? Neurosci Biobehav Rev 32:1001–1013

    Article  PubMed  Google Scholar 

  • Sauseng P, Klimesch W, Stadler W, Schabus M, Doppelmayr M, Hanslmayr S, Gruber WR, Birbaumer N (2005) A shift of visual spatial attention is selectively associated with human EEG alpha activity. Eur J Neurosci 22:2917–2926

    Article  PubMed  CAS  Google Scholar 

  • Schack B (2004) How to construct a microstate-based alphabet for evaluating information processing in time. Int J Bifurcat Chaos 14:793–814

    Article  Google Scholar 

  • Schlegel F, Lehmann D, Faber PL, Milz P, Gianotti LR (2012) EEG microstates during resting represent personality differences. Brain Topogr 25:20–26

    Article  PubMed  Google Scholar 

  • Siegel M, Donner TH, Oostenveld R, Fries P, Engel AK (2008) Neuronal synchronization along the dorsal visual pathway reflects the focus of spatial attention. Neuron 60:709–719

    Article  PubMed  CAS  Google Scholar 

  • Stam CJ, Breakspear M, van Cappellen van Walsum AM, van Dijk BW (2003) Nonlinear synchronization in EEG and whole-head MEG recordings of healthy subjects. Hum Brain Mapp 19:63–78

    Article  PubMed  Google Scholar 

  • Tsuda I (2001) Toward an interpretation of dynamic neural activity in terms of chaotic dynamical systems. Behav Brain Sci 24:793–847

    Article  PubMed  CAS  Google Scholar 

  • Tzelepi A, Angevin RR, Amditis A (2008) In Proceedings of the 5th Intuition International Conference, Turin, Italy

  • Valencia M, Martinerie J, Dupont S, Chavez M (2008) Dynamic small-world behavior in functional brain networks unveiled by an event-related networks approach. Phys Rev E 77:050905(R)

    Google Scholar 

  • Van de Ville D, Britz J, Michel CM (2010) EEG microstate sequences in healthy humans at rest reveal scale-free dynamics. Proc Natl Acad Sci USA 107:18179–18184

    Article  PubMed  Google Scholar 

  • Varela F, Lachaux J-P, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2:229–239

    Article  PubMed  CAS  Google Scholar 

  • Von Stein A, Sarnthein J (2000) Different frequencies for different scales of cortical integration: from local gamma to long-range alpha/theta synchronization. Int J Psychophysiol 38:301–313

    Article  Google Scholar 

  • Xie X, Beni G (1991) A validity measure for fuzzy clustering. IEEE Trans Pattern Anal Mach Intell 13:841–847

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Dimitriadis.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3228 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dimitriadis, S.I., Laskaris, N.A. & Tzelepi, A. On the Quantization of Time-Varying Phase Synchrony Patterns into Distinct Functional Connectivity Microstates (FCμstates) in a Multi-trial Visual ERP Paradigm. Brain Topogr 26, 397–409 (2013). https://doi.org/10.1007/s10548-013-0276-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-013-0276-z

Keywords

Navigation