Skip to main content

Advertisement

Log in

Aerobic Fitness and the Brain: Increased N-Acetyl-Aspartate and Choline Concentrations in Endurance-Trained Middle-Aged Adults

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Engagement in regular aerobic exercise is associated with cognitive benefits, but information on the mechanisms governing these changes in humans is limited. The goal of the current study was to compare neurometabolite concentrations relating to cellular metabolism, structure, and viability in endurance-trained and sedentary middle-aged adults. Twenty-eight endurance-trained and 27 sedentary adults, aged 40–65 years, underwent general health assessment, cardiorespiratory fitness measurement, neuropsychological testing, and proton magnetic resonance spectroscopy (1H MRS). 1H MRS was used to examine N-acetyl-aspartate (NAA), creatine (Cr), myo-inositol (mI), choline (Cho), and glutamate (Glu) concentrations in frontal and occipitoparietal grey matter. Group differences in concentrations of NAA, Cho, mI, and Glu, calculated as ratios over Cr, were explored using ANOVA. There were no significant differences in global cognitive function, memory, and executive function performance between the groups. In comparison to sedentary adults, the endurance-trained group displayed significantly higher NAA/Cr in the frontal grey matter (F(1, 53) = 5.367, p = 0.024) and higher Cho/Cr in the occipitoparietal grey matter (F(1, 53) = 5.138, p = 0.028). Within our middle-aged sample, endurance-trained adults demonstrated higher levels of NAA/Cr in the frontal grey matter and higher Cho/Cr in the occipitoparietal grey matter. Higher levels of NAA may indicate greater neuronal integrity and higher cerebral metabolic efficiency in association with cardiorespiratory fitness, whereas increased Cho may represent increased phospholipid levels secondary to neural plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adibhatla RM, Hatcher JF, Dempsey RJ (2001) Effects of citicoline on phospholipid and glutathione levels in transient cerebral ischemia. Stroke 32:2376–2381

    Article  PubMed  CAS  Google Scholar 

  • Angelie E, Bonmartin A, Boudraa A, Gonnaud PM, Mallet JJ, Sappey-Marinier D (2001) Regional differences and metabolic changes in normal aging of the human brain: proton MR spectroscopic imaging study. Am J Neuroradiol 22:119–127

    PubMed  CAS  Google Scholar 

  • Araki W, Wurtman RJ (1997) Control of membrane phosphatidylcholine biosynthesis by diacylglycerol levels in neuronal cells undergoing neurite outgrowth. Proc Natl Acad Sci USA 94:11946–11950

    Article  PubMed  CAS  Google Scholar 

  • Barnes DE, Yaffe K, Satariano WA, Tager IB (2003) A longitudinal study of cardiorespiratory fitness and cognitive function in healthy older adults. J Am Geriatr Soc 51:459–465

    Article  PubMed  Google Scholar 

  • Borg GA (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14:377–381

    Google Scholar 

  • Cheng LL, Newell K, Mallory AE, Hyman BT, Gonzalez RG (2002) Quantification of neurons in Alzheimer and control brains with ex vivo high resolution magic angle spinning proton magnetic resonance spectroscopy and stereology. Magn Reson Imaging 20:527–533

    Article  PubMed  Google Scholar 

  • Clark JB (1998) N-acetyl aspartate: a marker for neuronal loss or mitochondrial dysfunction. Dev Neurosci 20:271–276

    Article  PubMed  CAS  Google Scholar 

  • Cohen PA, Harezlak J, Gongvatana A, Buchthal S, Schifitto G, Clark U, Paul R, Taylor M, Thompson P, Tate D, Alger J, Brown M, Zhong J, Campbell T, Singer E, Daar E, McMahon D, Tso Y, Yiannoutsos CT, Navia B, HIV Neuroimaging Consortium (2010) Cerebral metabolite abnormalities in human immunodeficiency virus are associated with cortical and subcortical volumes. J Neurovirol 16:435–444

    PubMed  CAS  Google Scholar 

  • Colcombe SJ, Kramer AF (2003) Fitness effects on the cognitive function of older adults. Psychol Sci 14:125–130

    Article  PubMed  Google Scholar 

  • Colcombe SJ, Erickson KI, Raz N, Webb AG, Cohen NJ, McAuley E, Kramer AF (2003) Aerobic fitness reduces brain tissue loss in aging humans. J Gerontol A 58:176–180

    Article  Google Scholar 

  • Colcombe SJ, Kramer AF, Erickson KI, Scalf P, McAuley E, Cohen NJ, Webb A, Jerome GJ, Marquez DX, Elavsky S (2004) Cardiovascular fitness, cortical plasticity, and aging. Proc Natl Acad Sci 101:3316–3321

    Article  PubMed  CAS  Google Scholar 

  • Colcombe SJ, Erickson KI, Scalf PE, Kim JS, Prakash R, McAuley E, Elavsky S, Marquez DX, Hu L, Kramer AF (2006) Aerobic exercise training increases brain volume in aging humans. J Gerontol A 61:1166–1170

    Article  Google Scholar 

  • Craig CL, Marshall AL, Sjöström M, Bauman AE, Booth ML, Ainsworth BE, Pratt M, Ekelund ULF, Yngve A, Sallis JF, Oja P (2003) International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc 35:1381–1395

    Article  PubMed  Google Scholar 

  • Delis DC, Kramer JH, Kaplan E, Ober BA (1987) California verbal learning test: adult version. The Psychological Corporation, San Antonio

    Google Scholar 

  • Demougeot C, Garnier P, Mossiat C, Bertrand N, Giroud M, Beley A, Marie C (2001) N-Acetylaspartate, a marker of both cellular dysfunction and neuronal loss: its relevance to studies of acute brain injury. J Neurochem 77:408–415

    Article  PubMed  CAS  Google Scholar 

  • Erickson KI, Weinstein AM, Sutton BP, Prakash RS, Voss MW, Chaddock L, Szabo A, Mailey E, White SM, Wojcicki TR, McAuley E, Kramer AF (2012) Beyond vascularization: aerobic fitness on n-acetylaspartate and memory. Brain Behav 2:32–41

    PubMed  Google Scholar 

  • Folstein MF, Folstein SE, McHugh PR (1975) Mini-Mental State: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198

    Article  PubMed  CAS  Google Scholar 

  • Friedman SD, Brooks WM, Jung RE, Chiulli SJ, Sloan JH, Montoya BT, Hart BL, Yeo RA (1999) Quantitative proton MRS predicts outcome after traumatic brain injury. Neurology 52:1384–1391

    Article  PubMed  CAS  Google Scholar 

  • Gordon BA, Rykhlevskaia EI, Brumback CR, Lee Y, Elavsky S, Konopack JF, McAuley E, Kramer AF, Colcombe S, Gratton G, Fabiani M (2008) Neuroanatomical correlates of aging, cardiopulmonary fitness level, and education. Psychophysiology 45:825–838

    Article  PubMed  Google Scholar 

  • Griffith H, Randall GH, Hollander JA, Okonkwo O, Evanochko WT, Harrell LE, Zamrini EY, Brockington JC, Marson DC (2007) Executive function is associated with brain proton magnetic resonance spectroscopy in amnestic mild cognitive impairment. J Clin Exp Neuropsychol 29:599–609

    Article  PubMed  Google Scholar 

  • Gutiérrez-Fernández M, Rodríguez-Frutos B, Fuentes B, Vallejo-Cremades MT, Álvarez-Grech J, Expósito-Alcaide M, Diez-Tejedor E (2011) CDP-choline treatment induces brain plasticity markers expression in experimental animal stroke. Neurochem Int 60:310–317

    Article  PubMed  Google Scholar 

  • Haley A, Gonzales M, Tarumi T, Miles S, Goudarzi K, Tanaka H (2010a) Elevated cerebral glutamate and myo-inositol levels in middle-aged adults with metabolic syndrome. J Cereb Blood Flow Metab 4:397–405

    Google Scholar 

  • Haley AP, Tarumi T, Gonzales MM, Suwagara J, Tanaka H (2010b) Subclinical atherosclerosis is related to lower neuronal viability in middle-aged adults: a 1H MRS study. Brain Res 1344:54–61

    Article  PubMed  CAS  Google Scholar 

  • Herminghaus S, Pilatus U, Möller-Hartmann W, Raab P, Lanfermann H, Schlote W, Zanella FE (2002) Increased choline levels coincide with enhanced proliferative activity of human neuroepithelial brain tumors. NMR Biomed 15:385–392

    Article  PubMed  CAS  Google Scholar 

  • Hurtado O, Cárdenas A, Pradillo JM, Morales JR, Ortego F, Sobrino T, Castillo J, Moro MA, Lizasoain I (2007) A chronic treatment with CDP-choline improves functional recovery and increases neuronal plasticity after experimental stroke. Neurobiol Dis 26:105–111

    Article  PubMed  CAS  Google Scholar 

  • Inglese M, Li BSY, Rusinek H, Babb JS, Grossman RI, Gonen O (2003) Diffusely elevated cerebral choline and creatine in relapsing-remitting multiple sclerosis. Magn Reson Med 50:190–195

    Article  PubMed  CAS  Google Scholar 

  • Kantarci K, Jack CR Jr, Xu YC, Campeau NG, O’Brien PC, Smith GE, Ivnik RJ, Boeve BF, Kokmen E, Tangalos EG, Petersen RC (2000) Regional metabolic patterns in mild cognitive impairment and Alzheimer’s disease: a 1H MRS study. Neurology 55:210–217

    Article  PubMed  CAS  Google Scholar 

  • Klein J (2000) Membrane breakdown in acute and chronic neurodegeneration: focus on choline-containing phospholipids. J Neural Transm 107:1027–1063

    Article  PubMed  CAS  Google Scholar 

  • Larson EB, Wang L, Bowen JD, McCormick WC, Teri L, Crane P, Kukull W (2006) Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older. Ann Intern Med 144:73–81

    PubMed  Google Scholar 

  • Lezak M, Howieson D, Loring D, Hannay H, Fischer J (2004) Neuropsychological assessment, 4th edn. Oxford University Press, New York

    Google Scholar 

  • Madsen TM, Treschow A, Bengzon J, Bolwig TG, Lindvall O, Tingstrom A (2000) Increased neurogenesis in a model of electroconvulsive shock therapy. Biol Psychiatry 47:1043–1049

    Article  PubMed  CAS  Google Scholar 

  • Navarro A, Boveris A (2007) The mitochondrial energy transduction system and the aging process. J Physiol Cell Physiol 292:C670–C686

    Article  CAS  Google Scholar 

  • Navarro A, Gomez C, López-Cepero JM, Boveris A (2004) Beneficial effects of moderate exercise on mice aging: survival, behavior, oxidative stress, and mitochondrial electron transfer. Am J Physiol Regul Integr Comp Physiol 286:R505–R511

    Article  PubMed  CAS  Google Scholar 

  • Neeper SA, Gomez-Pinilla F, Choi J, Cotman CW (1996) Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res 726:49–56

    Article  PubMed  CAS  Google Scholar 

  • Pakkenberg B, Gundersen HJG (1997) Neocortical neuron number in humans: effect of sex and age. J Comp Neurol 384:312–320

    Article  PubMed  CAS  Google Scholar 

  • Park DC, Polk TA, Mikels JA, Taylor SF, Marshuetz C (2001) Cerebral aging: integration of brain and behavioral models of cognitive function. Dialog Clin Neurosci 3:151–166

    CAS  Google Scholar 

  • Pettegrew JW, Panchalingam K, Withers G, McKeag D, Strychor S (1999) Changes in brain energy and phospholipid metabolism during development and aging in the Fischer 344 rat. J Neuropathol Exp Neurol 49:237–249

    Article  Google Scholar 

  • Prakash R, Snook EM, Motl RW, Kramer AF (2010) Aerobic fitness is associated with gray matter volume and white matter integrity in multiple sclerosis. Brain Res 1341:41–51

    Article  PubMed  CAS  Google Scholar 

  • Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672–679

    Article  PubMed  CAS  Google Scholar 

  • Redila VA, Christie BR (2006) Exercise-induced changes in dendritic structure and complexity in the adult hippocampal dentate gyrus. Neuroscience 137:1299–1307

    Article  PubMed  CAS  Google Scholar 

  • Reitan RM (1958) Validity of the Trail Making Test as an indicator of organic brain damage. Percept Mot Skills 8:271–276

    Google Scholar 

  • Ross AJ, Sachdev PS (2004) Magnetic resonance spectroscopy in cognitive research. Brain Res Rev 44:83–102

    Article  PubMed  CAS  Google Scholar 

  • Ruff RM, Light RH, Parker SB, Levin HS (1996) Benton controlled oral word association test: reliability and updated norms. Arch Clin Neuropsychol 11:329–338

    PubMed  CAS  Google Scholar 

  • Sartorius A, Neumann-Haefelin C, Vollmayr B, Hoehn M, Henn FA (2003) Choline rise in the rat hippocampus induced by electroconvulsive shock treatment. Biol Psychiatry 53:620–623

    Article  PubMed  CAS  Google Scholar 

  • Signoretti S, Marmarou A, Aygok GA, Fatouros PP, Portella G, Bullock RM (2008) Assessment of mitochondrial impairment in traumatic brain injury using high-resolution proton magnetic resonance spectroscopy. J Neurosurg Pediatr 108:42–52

    CAS  Google Scholar 

  • Skullerud K (1985) Variations in the size of the human brain. Influence of age, sex, body length, body mass index, alcoholism, Alzheimer changes, and cerebral atherosclerosis. Acta Neurol Scand Suppl 102:1–94

    PubMed  CAS  Google Scholar 

  • St John PD, Montgomery PR, Kristjansson B, McDowell I (2002) Cognitive scores, even within the normal range, predict death and institutionalization. Age Ageing 31:373–378

    Article  PubMed  Google Scholar 

  • Staffen W, Zauner H, Mair A, Kutzelnigg A, Kapeller P, Stangl H, Raffer E, Niederhofer H, Ladurner G (2005) Magnetic resonance spectroscopy of memory and frontal brain region in early multiple sclerosis. J Neuropsychiatry Clin Neurosci 17:357–363

    Article  PubMed  CAS  Google Scholar 

  • Stranahan AM, Khalil D, Gould E (2007) Running induces widespread structural alterations in the hippocampus and entorhinal cortex. Hippocampus 17:1017–1022

    Article  PubMed  Google Scholar 

  • Unger JW, Livingston JN, Moss AM (1991) Insulin receptors in the central nervous system: localization, signalling mechanisms and functional aspects. Prog Neurobiol 36:343–362

    Article  PubMed  CAS  Google Scholar 

  • Van Praag H, Kempermann G, Gage FH (1999) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2:266–270

    Article  PubMed  Google Scholar 

  • Vaynman S, Ying Z, Gomez-Pinilla F (2004) Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur J Neurosci 20:2580–2590

    Article  PubMed  Google Scholar 

  • Wechsler D (1997) WAIS-III administration and scoring manual, 3rd edn. The Psychological Corporation, San Antonio

    Google Scholar 

  • Wechsler D (2001) Wechsler test of adult reading: WTAR. The Psychological Corporation, San Antonio

    Google Scholar 

  • Wilson TM, Tanaka H (2000) Meta-analysis of the age-associated decline in maximal aerobic capacity in men: relation to training status. Am J Physiol Heart Circ Physiol 278:H829–H834

    PubMed  CAS  Google Scholar 

  • World Health Organization (2005) Preventing chronic diseases: a vital investment. WHO Global Report, Geneva

    Google Scholar 

Download references

Acknowledgments

This work was funded in part by grants from the American Heart Association (09BGIA2060722, APH), American Federation for Aging Research (8A0024, APH), the National Institutes of Health (NS075565, APH) and the University of Texas at Austin (APH). The authors thank the Imaging Center Staff for their help with the participants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreana P. Haley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzales, M.M., Tarumi, T., Kaur, S. et al. Aerobic Fitness and the Brain: Increased N-Acetyl-Aspartate and Choline Concentrations in Endurance-Trained Middle-Aged Adults. Brain Topogr 26, 126–134 (2013). https://doi.org/10.1007/s10548-012-0248-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-012-0248-8

Keywords

Navigation