Skip to main content
Log in

Momentum and Sensible Heat Exchange in an Ice-Free Arctic Fjord

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Momentum and sensible heat exchange are studied in an Arctic fjord system in Spitsbergen, Svalbard (Norway), based on tower measurements taken in January–June 2008. Due to ice-free conditions, the surface layer was unstable for most of the time, occasionally very unstable. The shape of the fjord and the surrounding topography have a large influence on the wind field. Low frequency eddies are mainly responsible for occasionally large crosswind momentum transfer that, together with upward momentum transfer (occurring in 9% of the data), invalidate conventional stability and scaling parameters. When the flow is along the fjord with moderate or high wind speeds, the Monin–Obukhov similarity theory is applicable. However, the momentum and the sensible heat exchange in the fjord system differs from the exchange taking place over the open ocean, mainly due to topographic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreas EL, Hicks BB (2002) Comments on critical test of the validity of Monin–Obukhov similarity during convective conditions. J Atmos Sci 59: 2605–2607

    Article  Google Scholar 

  • Argentini S, Viola AP, Mastrantonio G, Maurizi A, Georgiadis T, Nardino M (2003) Characteristics of the boundary layer at Ny-Ålesund in the Arctic during the ARTIST field experiment. Ann Geophys 46: 185–196

    Google Scholar 

  • Arya SP (2001) Introduction to micrometeorology. Academic Press, San Diego, USA, pp 420

    Google Scholar 

  • Baas P, Steeneveld GJ, van de Wiel BJH, Holtslag AAM (2006) Exploring self-correlation in flux-gradient relationships for stably stratified conditions. J Atmos Sci 63: 3045–3054

    Article  Google Scholar 

  • Beine HJ, Argentini S, Maurizi A, Mastrantonio G, Viola A (2001) The local wind field at Ny-Ålesund and the Zeppelin mountain at Svalbard. Meteorol Atmos Phys 78: 107–113

    Article  Google Scholar 

  • Brümmer B (1999) Roll and cell convection in wintertime Arctic cold-air outbreaks. J Atmos Sci 56: 2613–2636

    Article  Google Scholar 

  • Chelton DB, Schlax MG, Freilich MH, Milliff RF (2004) Satellite measurements reveal persistent small-scale features in ocean winds. Science 303: 978–983

    Article  Google Scholar 

  • Cornillon P, Park K-A (2001) Warm core ring velocities inferred from NSCAT. Geophys Res Lett 28: 575–578

    Article  Google Scholar 

  • Desjardins RL, MacPherson JI, Schuepp PH, Karanja F (1989) An evaluation of aircraft flux measurements of CO2, water vapor and sensible heat. Boundary-Layer Meteorol 47: 55–69

    Article  Google Scholar 

  • Drennan WM, Kahma KK, Donelan MA (1999) On momentum flux and velocity spectra over waves. Boundary-Layer Meteorol 92: 489–515

    Article  Google Scholar 

  • Dupuis H, Taylor PK, Weill A, Katsaros K (1997) Inertial dissipation method applied to derive turbulent fluxes over the ocean during the Surface of the Ocean, Fluxes and Interactions with the Atmosphere/Atlantic Stratocumulus Transition Experiment (SOFIA/ASTEX) and Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) experiments with low to moderate wind speeds. J Geophys Res 102(C9): 21115–21129

    Article  Google Scholar 

  • Frenzen P, Vogel CA (2001) Further studies of atmospheric turbulence in layers near the surface: scaling the TKE budget above the roughness sublayer. Boundary-Layer Meteorol 99: 173–206

    Article  Google Scholar 

  • Geernaert GL (1988) Measurements of the angle between the wind vector and wind stress vector in the surface layer over the North Sea. J Geophys Res 93(C7): 8215–8220

    Article  Google Scholar 

  • Geernaert GL, Hansen F, Courtney M, Herbers T (1993) Directional attributes of the ocean surface wind stress vector. J Geophys Res 98(C9): 16571–16582

    Article  Google Scholar 

  • Grachev AA, Fairall CW (2001) Upward momentum transfer in the marine boundary layer. J Phys Oceanogr 31: 1698–1711

    Article  Google Scholar 

  • Grachev AA, Fairall CW, Hare JE, Edson JB, Miller SD (2003) Wind stress vector over ocean waves. J Phys Oceanogr 33(11): 2408–2429

    Article  Google Scholar 

  • Haarpaintner J, Gascard J-C, Haugan PM (2001) Ice production and brine formation in Storfjorden, Svalbard. J Geophys Res 106(C7): 14001–14013

    Article  Google Scholar 

  • Högström U (1996) Review of some basic characteristics of the atmospheric surface layer. Boundary-Layer Meteorol 78: 215–246

    Article  Google Scholar 

  • Högström U, Sahlée E, Drennan WM, Kahma KK, Smedman A-S, Johansson C, Pettersson H, Rutgersson A, Tuomi L, Zhang F, Johansson M (2008) Momentum fluxes and wind gradients in the marine boundary layer—a multi-platform study. Boreal Environ Res 13: 475–502

    Google Scholar 

  • Kelly KA, Dickinson S, McPhaden MJ, Johnson GC (2001) Ocean currents evident in satellite wind data. Geophys Res Lett 28: 2469–2472

    Article  Google Scholar 

  • Khanna S, Brasseur JG (1997) Analysis of Monin–Obukhov similarity from large-eddy simulation. J Fluid Mech 345: 251–286

    Article  Google Scholar 

  • Klipp CL, Mahrt L (2004) Flux–gradient relationship, self-correlation and intermittency in the stable boundary layer. Q J Roy Meteorol Soc 130: 2087–2103

    Article  Google Scholar 

  • Lange B, Larsen S, Højstrup J, Barthemlie R (2004) The influence of thermal effects on the wind speed profile of the coastal marine boundary layer. Boundary-Layer Meteorol 112: 587–617

    Article  Google Scholar 

  • Large WG, Pond S (1981) Open ocean momentum flux measurements in moderate to strong winds. J Phys Oceanogr 11: 324–336

    Article  Google Scholar 

  • Lee X, Massman W, Law B (2004) Handbook of micrometeorology, a guide for surface flux measurement and analysis. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 250

    Google Scholar 

  • Lumley JL, Panofsky HA (1964) The structure of atmospheric turbulence. Interscience Publishers, New York, p 239

    Google Scholar 

  • Mahrt L, Vickers D, Sun J, Jensen N-O, Jørgensen H, Pardyjak E, Fernando H (2001) Determination of the surface drag coefficient. Boundary-Layer Meteorol 99: 249–276

    Article  Google Scholar 

  • Manley G (1938) Meteorological observations of the British East Greenland expedition, 1935–36, at Kangerdlugssua, 68° 10′N, 31°44′W. Q J Roy Meteorol Soc 64: 253–276

    Article  Google Scholar 

  • Moraes OLL, Acevedo OC, Degrazia GA, Anfossi D, da Silva R, Anabor V (2005) Surface layer turbulence parameters over a complex terrain. Atmos Environ 39: 3103–3112

    Article  Google Scholar 

  • Morales Maqueda MA, Willmott AJ, Biggs NRT (2004) Polynya dynamics: a review of observations and modeling. Rev Geophys 42(RG1004). doi:10.1029/2002RG000116

  • Nilsen F, Cottier F, Skogseth R, Mattson S (2008) Fjord-shelf exchanges controlled by ice and brine production: the interannual variation of Atlantic Water in Isfjorden, Svalbard. Cont Shelf Res 28: 1838–1853

    Article  Google Scholar 

  • Oncley SP, Businger JA, Itsweire EC, Friehe CA, LaRue JC, Chang SS (1990) Surface layer profiles and turbulence measurements over uniform land under near-neutral conditions. In: Proceedings, Ninth symposium on turbulence and diffusion, American Meteorological Society, Risø, Roskilde, Denmark, pp 237–240

  • Pettersson H (2004) Wave growth in a narrow bay. Finnish Institute of Marine Research—contributions, No. 9. Finnish Institute of Marine Research, Finland, 33 pp

  • Rieder KF, Smith JA (1998) Removing wave effects from the wind stress vector. J Geophys Res 103(C1): 1363–1374

    Article  Google Scholar 

  • Rieder KF, Smith JA, Weller RA (1994) Observed directional characteristics of the wind, wind stress, and surface waves on the open ocean. J Geophys Res 99(C11): 22589–22596

    Article  Google Scholar 

  • Rutgersson A, Smedman A-S, Högström U (2001) Use of conventional stability parameters during swell. J Geophys Res 106(C11): 27117–27134

    Article  Google Scholar 

  • Sandvik AD, Furevik BR (2002) Case study of a coastal jet at Spitsbergen—comparison of SAR- and model-estimated wind. Mon Weather Rev 130: 1040–1051

    Article  Google Scholar 

  • Schotanus P, Nieuwstadt FTM, De Bruin HAR (1983) Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes. Boundary-Layer Meteorol 26: 81–93

    Article  Google Scholar 

  • Sjöblom A, Smedman A-S (2002) The turbulent kinetic energy budget in the marine atmospheric surface layer. J Geophys Res 107(C10): 3142. doi:10.1029/2001JC001016

    Article  Google Scholar 

  • Sjöblom A, Smedman A-S (2003) Vertical structure in the marine atmospheric boundary layer and its implication for the inertial dissipation method. Boundary-Layer Meteorol 109: 1–25

    Article  Google Scholar 

  • Skogseth R, Sandvik AD, Asplin L (2007) Wind and tidal forcing on the meso-scale circulation in Storfjorden, Svalbard. Cont Shelf Res 27: 208–227

    Article  Google Scholar 

  • Skogseth R, Nilsen F, Smedsrud LH (2009) Supercooled water in an Arctic polynya: observations and modeling. J Glaciol 55: 43–52

    Article  Google Scholar 

  • Smedman A-S, Tjenström M, Högström U (1994) The near-neutral marine atmospheric boundary layer with no surface shearing stress: a case study. J Atmos Sci 51: 3399–3411

    Article  Google Scholar 

  • Smedman A-S, Högström U, Bergström H, Rutgersson A, Kahma KK, Pettersson H (1999) A case-study of air–sea interaction during swell conditions. J Geophys Res 104(C11): 25833–25851

    Article  Google Scholar 

  • Smedman A-S, Guo Larsén X, Högström U, Kahma KK, Pettersson H (2003) Effect of sea state on the momentum exchange over the sea during neutral conditions. J Geophys Res 108(C11): 3367

    Article  Google Scholar 

  • Syvitski JPM, Burrell DC, Skei JM (1987) Fjords: processes and products. Springer, New York, USA, p 379

    Google Scholar 

  • Uttal T, Curry JA, Mcphee MG, Perovich DK, Moritz RE, Maslanik JA, Guest PS, Stern HL, Moore JA, Turenne R, Heiberg A, Serreze MC, Wylie DP, Persson OG, Paulson CA, Halle C, Morison JH, Wheeler PA, Makshtas A, Welch H, Shupe MD, Intrieri JM, Stamnes K, Lindsey RW, Pinkel R, Pegau WS, Stanton TP, Grenfeld TC (2002) Surface heat budget of the Arctic Ocean. Bull Am Meteorol Soc 83: 255–275

    Article  Google Scholar 

  • Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Ocean Technol 14: 512–526

    Article  Google Scholar 

  • Zemba J, Friehe CA (1987) The marine atmospheric boundary layer jet in the Coastal Ocean Dynamics Experiment. J Geophys Res 92(C2): 1489–1496

    Article  Google Scholar 

  • Zhang FW, Drennan WM, Haus BK, Graber HC (2009) On wind–wave-current interactions during the Shoaling Waves Experiment. J Geophys Res 114(C01018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiina Kilpeläinen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kilpeläinen, T., Sjöblom, A. Momentum and Sensible Heat Exchange in an Ice-Free Arctic Fjord. Boundary-Layer Meteorol 134, 109–130 (2010). https://doi.org/10.1007/s10546-009-9435-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-009-9435-x

Keywords

Navigation