Skip to main content
Log in

‘Application of a New Spectral Theory of Stably Stratified Turbulence to the Atmospheric Boundary Layer over Sea Ice’

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A new spectral closure model of stably stratified turbulence is used to develop a K–ε model suitable for applications to the atmospheric boundary layer. This K–ε model utilizes vertical viscosity and diffusivity obtained from the spectral theory. In the ε equation, the Coriolis parameter-dependent formulation of the coefficient C 1 suggested by Detering and Etling is generalized to include the dependence on the Brunt-Väisälä frequency, N. The new K–ε model is tested in simulations of the ABL over sea ice and compared with observations from BASE as simulated in large-eddy simulations by Kosovic and Curry, and observations from SHEBA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • H. D. Abarbanel D. D. Holm J. E. Marsden T. Ratiu (1984) ArticleTitle‘Richardson Number Criterion for the Nonlinear Stability of Three-Dimensional Stratified Flow’ Phys. Rev. Lett. 52 2352–2355 Occurrence Handle10.1103/PhysRevLett.52.2352

    Article  Google Scholar 

  • Andreas, E. L., Fairall, C. W., Guest, P. S., and Persson, P. O. G.: 1999, ‘An Overview of the SHEBA Atmospheric Surface Flux Programm’ 13th Symposium on Boundary Layers and, Turbulence, Dallas, TX, American Meteorological Society., 550–555.

  • Cane, M.: 1993, Near-Surface Mixing and the Ocean’s Role in Climate. in: B. Galperin and S. A. Orszag, (eds.), Large Eddy Simulation of Complex Engineering and Geophysical Flows, Cambridge University Press, pp. 489–509.

  • Y. Cheng V. M. Canuto A. M. Howard (2002) ArticleTitle‘An Improved Model for the Turbulent PBL’ J. Atmos. Sci. 59 1550–1565 Occurrence Handle10.1175/1520-0469(2002)059<1550:AIMFTT>2.0.CO;2

    Article  Google Scholar 

  • J. Y. N. Cho R. E. Newell J. D. Barrick (1999) ArticleTitle‘Horizontal Wavenumber Spectra of Winds, Temperature, and Trace Gases During the Pacific Exploratory Missions: 2. Gravity Waves, Quasi-Two-Dimensional Turbulence, and Vortical Modes’ J. Geophys. Res. 104 16297–16308

    Google Scholar 

  • J. A. Curry (1986) ArticleTitle‘Interaction Among Turbulence, Radiation and Microphysics in Arctic Stratus Clouds’ J. Atmos. Sci. 43 90–106

    Google Scholar 

  • J. A. Curry E. E. Ebert G. F. Herman (1988) ArticleTitle‘Mean and Turbulence Structure of the Summertime Arctic Cloudy Boundary Layer’ Quart. J. Roy. Meteorol. Soc. 114 715–746 Occurrence Handle10.1256/smsqj.48108

    Article  Google Scholar 

  • J. A. Curry W. B. Rossow D. Randall J. L. Schramm (1996) ArticleTitle‘Overview of Arctic Cloud and Radiation Characteristics’ J. Climate 9 1731–1764 Occurrence Handle10.1175/1520-0442(1996)009<1731:OOACAR>2.0.CO;2

    Article  Google Scholar 

  • H. Detering D. Etling (1985) ArticleTitle‘Application of the E–ε Model to the Atmospheric Boundary Layer’ Boundary-Layer Meteorol. 33 113–133 Occurrence Handle10.1007/BF00123386

    Article  Google Scholar 

  • R. W. Fett S. D. Burk W. T. Thompson (1994) ArticleTitle‘Environmental Phenomena of the Beaufort Sea Observed During the Leads Experiment’ Bull. Amer. Meteorol. Soc. 75 2131–2145

    Google Scholar 

  • B. Galperin L. H. Kantha S. Hassid A. Rosati (1988) ArticleTitle‘A Quasi-Equilibrium Turbulent Energy Model for Geophysical Flows’ J. Atmos. Sci. 45 55–62 Occurrence Handle10.1175/1520-0469(1988)045<0055:AQETEM>2.0.CO;2

    Article  Google Scholar 

  • B. Galperin L. H. Kantha (1989) ArticleTitle‘Turbulence Model for Rotating Flows’ AIAA J. 27 750–757

    Google Scholar 

  • B. Galperin G. L. Mellor (1991) ArticleTitle‘The Effects of Streamline Curvature and Spanwise Rotation on Near-Surface, Turbulent Boundary-Layers’ J. Appl. Math. Physics (ZAMP) 42 565–583

    Google Scholar 

  • Galperin, B., and Orszag, S., (eds.), 1993: Large Eddy Simulation of Complex Engineering and Geophysical Flows, Cambridge University Press, 622 pp.

  • B. Galperin A. Rosati L. H. Kantha G. L. Mellor (1989) ArticleTitle‘Modeling Rotating Stratified Turbulent Flows With Application to Oceanic Mixed Layers’ J. Phys. Oceanogr. 19 901–916 Occurrence Handle10.1175/1520-0485(1989)019<0901:MRSTFW>2.0.CO;2

    Article  Google Scholar 

  • Hahn, C. J., Warren, S. G., London, J., Chervin, R. M., and Jenne, R. L.: 1984, Atlas of Simultaneous Occurrences of Different Cloud Types Over Land. NCAR Tech. Note TN-241-STR, 21 pp.

  • A. A. M. Holtslag (2003) ArticleTitle‘GABLS Initiates Intercomparison for Stable Boundary Layer Case’ GEWEX News 13 7–8

    Google Scholar 

  • L. N. Howard (1961) ArticleTitle‘Note on a Paper of John W. Miles’ J. Fluid Mech. 10 509–512

    Google Scholar 

  • Huschke, R. E.: 1969 Arctic Cloud Statistics from Air-Calibrated Surface Weather Observations. The Rand Corporation RM-6173-PR, 79 pp.

  • J. M. Intrieri M. D. Shupe T. Uttal B. J. McCarty (2002) ArticleTitle‘Annual Cycle of Arctic Cloud Geometry and Phase from Radar and Lidar at SHEBA’ J. Geophys. Res. 107 8030

    Google Scholar 

  • L. H. Kantha (2003) ArticleTitle‘On an Improved Model for the Turbulent PBL’ J. Atmos. Sci. 60 2239–2246

    Google Scholar 

  • L. H. Kantha C. A. Clayson (1994) ArticleTitle‘An Improved Mixed-Layer Model for Geophysical Applications’ J. Geophys. Res. 99 25235–25266 Occurrence Handle10.1029/94JC02257

    Article  Google Scholar 

  • J. Kim L. Mahrt (1993) ArticleTitle‘Simple Formulation of Turbulent Mixing in the Stable Free Atmosphere and Nocturnal Boundary Layer’ Tellus 44 381–394

    Google Scholar 

  • J. C. King (1990) ArticleTitle‘Some Measurements of Turbulence Over an Antarctic Ice Shelf’ Quart. J. Roy. Meteorol. Soc. 116 379–400 Occurrence Handle10.1256/smsqj.49207

    Article  Google Scholar 

  • S. A. Kitaigorodskii S. M. Joffre (1988) ArticleTitle‘In Search of Simple Scaling for the Heights of the Stratified Atmospheric Boundary Layer’ Tellus 40A 419–443

    Google Scholar 

  • J. Kondo O. Kanechika N. Yasuda (1978) ArticleTitle‘Heat and Momentum Transfer Under Strong Stability in the Atmospheric Surface Layer’ J. Atmos. Sci. 35 1012–1021 Occurrence Handle10.1175/1520-0469(1978)035<1012:HAMTUS>2.0.CO;2

    Article  Google Scholar 

  • B. Kosovic J. A. Curry (2000) ArticleTitle‘A Large Eddy Simulation Study of a Quasi-Steady, Stably Stratified Atmospheric Boundary Layer’ J. Atmos. Sci. 57 1052–1068 Occurrence Handle10.1175/1520-0469(2000)057<1052:ALESSO>2.0.CO;2

    Article  Google Scholar 

  • R. H. Kraichnan (1959) ArticleTitle‘The Structure of Isotropic Turbulence at Very High Reynolds Numbers’ J. Fluid Mech. 5 497–543

    Google Scholar 

  • R. H. Kraichnan (1987) ArticleTitle‘An Interpretation of the Yakhot–Orszag Turbulence Theory’ Phys. Fluids 30 2400–2405

    Google Scholar 

  • W. G. Large J. C. McWilliams P. Niiler (1986) ArticleTitle‘Upper Ocean Thermal Response to Strong Autumnal Forcing of the Northeast Pacific’’ J. Phys. Oceanogr. 16 1524–1550 Occurrence Handle10.1175/1520-0485(1986)016<1524:UOTRTS>2.0.CO;2

    Article  Google Scholar 

  • W. G. Large J. C. McWilliams S. C. Doney (1994) ArticleTitle‘Oceanic Vertical Mixing: A Review and a Model with Nonlocal Boundary Layer Parameterization’ Rev. Geophys. 32 363–403 Occurrence Handle10.1029/94RG01872

    Article  Google Scholar 

  • S. E. Larsen M. Courtney L. Mahrt (1990) Low Frequency Behaviour of Horizontal Power Spectra in Stable Surface Layers American Meteorological Society Boston, U.S.A 401–404

    Google Scholar 

  • S. A. Mack H. C. Schoeberlein (2004) ArticleTitle‘Richardson Number and Ocean Mixing: Towed Chain Observations’ J. Phys. Oceanogr. 34 736–754 Occurrence Handle10.1175/1520-0485(2004)034<0736:RNAOMT>2.0.CO;2

    Article  Google Scholar 

  • L. Mahrt (1998) ArticleTitle‘Stratified Atmospheric Boundary Layers and Breakdown of Models’ Theoret. Comput. Fluid Dyn. 11 263–279

    Google Scholar 

  • L. Mahrt (1999) ArticleTitle‘Stratified Atmospheric Boundary Layers’ Boundary-Layer Meteorol. 90 375–396

    Google Scholar 

  • McComb, W. D. (1991) The Physics of Fluid Turbulence. Oxford University Press, 576 pp

  • G. L. Mellor T. Yamada (1982) ArticleTitle‘Development of Turbulence Closure Model for Geophysical Fluid Problems’ Rev. Geophys. Space Phys. 20 851–875

    Google Scholar 

  • J. W. Miles (1961) ArticleTitle‘On the Stability of Heterogeneous Shear Flows’ J. Fluid Mech. 10 496–508

    Google Scholar 

  • Orszag, S. A. (1977) Statistical Theory of Turbulence. in R. Balian J.-L. Peabe, (eds.), Les Houches Summer School in Physics, Gordon and Breach, 237–374.

  • I. R. Paluch D. H. Lenschow (1997) ArticleTitle‘Arctic Boundary Layer in the Fall Season Over Open and Frozen Sea’ J. Geophys. Res., 102 25955–25971 Occurrence Handle10.1029/97JD01563

    Article  Google Scholar 

  • V. Perov S. Zilitinkevich K.-I. Ivarsson (2001) ArticleTitle‘Implementation of New Parameterisation of the Surface Turbulent Fluxes for Stable Stratification in the 3-D HIRLAM’ HIRLAM Newsletter 37 60–66

    Google Scholar 

  • Perov, V., Gollvik, S. (1996) A 1-D Test of a Non-Local K–ε Boundary Layer Scheme for a NWP Model Resolution. HIRLAM Technical Report 25.

  • Persson, P. O. G., Fairall, C. W., Andreas, E. L., Guest, P. S., Perovich, D. K. (2002) ’Measurements Near the Atmospheric Surface Flux Group Tower at SHEBA: Site Description, Data Processing and Accuracy Estimates’. NOAA Tech. Memo. OAR ETL.

  • H. Peters M. C. Gregg J. M. Toole (1988) ArticleTitle‘On the Parameterization of Equatorial Turbulence’ J. Geophys. Res. 93 1199–1218 Occurrence Handle10.1029/JC093iC02p01199

    Article  Google Scholar 

  • J. O. Pinto J. A. Curry (1995) ArticleTitle‘Atmospheric Convective Plumes Emanating from Leads, II, Microphysical and Radiative Processes’ J. Geophys. Res. 100 4633–4642

    Google Scholar 

  • V. Ramanathan R. D. Cess E. F. Harrison P. Minnis B. R. Barkstrom E. Ahmad D. Hartman (1989) ArticleTitle‘Cloud Radiative Forcing and Climate: Results from the Earth Radiative Budget Experiment’ Science 243 63–67

    Google Scholar 

  • Rodi, W., (1975) A note on the Empirical Constant in the Kolmogorov-Prandtl Eddy-Viscosity Expression. J. Fluids Eng., Trans. ASME, 386–389.

  • Rodi, W. (1980) Turbulence Models and Their Application in Hydraulics, Tech. Rep. Int. Assoc. for Hydraul. Res., Delft, Netherlands.

  • W. B. Rossow A. W. Walker L. C. Garder (1993) ArticleTitle‘Comparison of ISCCP and Other Cloud Amounts’ J. Climate 6 2394–2418

    Google Scholar 

  • D. Ruffeaux P. Ola G. Persson C. Fairall D. E. Wolfe (1995) ArticleTitle‘Ice Pack and Surface Energy Budgets During LEADEX 1992’ J. Geophys. Res. 100 4593–4612

    Google Scholar 

  • Sukoriansky, S., Galperin, B. (2005) A Spectral Closure Model for Turbulent Flows with Stable Stratification. in: H. Baumert, J. Simpson, J. Sundermann, (eds.), Marine Turbulence - Theories, Observations and Models, Cambridge University Press, pp. 53–65.

  • S. Sukoriansky B. Galperin I. Staroselsky (2003) ArticleTitle‘Cross-term and ε-Expansion in RNG Theory of Turbulence’ Fluid Dyn. Res. 33 319–331 Occurrence Handle10.1016/j.fluiddyn.2003.08.001

    Article  Google Scholar 

  • S. C. Tsay K. Jayaweera (1984) ArticleTitle‘Physical Characteristics of Arctic Stratus Clouds’ J. Clim. Appl. Meteorol 23 584–596 Occurrence Handle10.1175/1520-0450(1984)023<0584:PCOASC>2.0.CO;2

    Article  Google Scholar 

  • T. Uttal et al. (2002) ArticleTitle‘Surface Heat Budget of the Arctic Ocean’ Bull. Amer. Meteorol. Soc. 83 255–276

    Google Scholar 

  • B. A. Walter J. E. Overland P. Turet (1995) ArticleTitle‘A Comparison of Satellite-Derived and Aircraft-Measured Surface Sensible Heat Fluxes Over the Beaufort Sea’ J. Geophys. Res. 100 4583–4591 Occurrence Handle10.1029/94JC02653

    Article  Google Scholar 

  • V. Yakhot S. A. Orszag (1986) ArticleTitle‘Renormalization Group Analysis of Turbulence. I. Basic Theory’ J. Sci. Comput. 1 3–51 Occurrence Handle10.1007/BF01061452

    Article  Google Scholar 

  • S. Zilitinkevich (2002) ArticleTitle‘Third-Order Transport due to Internal Waves and Non-Local Turbulence in the Stably Stratified Surface Layer’ Quart. J. Roy. Meteorol. Soc. 128 913–925

    Google Scholar 

  • S. S. Zilitinkevich A. Baklanov J. Rost A.-S. Smedman V. Lykosov P. Calanca (2002a) ArticleTitle‘Diagnostic and Prognostic Equations for the Depth of the Stably Stratified Ekman Boundary Layer’ Quart, J. Roy. Meteorol. Soc. 128 25–46

    Google Scholar 

  • S. S. Zilitinkevich A. Baklanov (2002) ArticleTitle‘Calculation of the Height of Stable Boundary Layers in Practical Applications’ Boundary-Layer Meteorol. 105 389–409 Occurrence Handle10.1023/A:1020376832738

    Article  Google Scholar 

  • S. S. Zilitinkevich P. Calanca (2000) ArticleTitle‘An Extended Similarity – Theory for the Stably Stratified Atmospheric Surface Layer’ Quart. J. Roy. Meteorol. Soc. 126 1913–1923 Occurrence Handle10.1256/smsqj.56617

    Article  Google Scholar 

  • S. S. Zilitinkevich I. N. Esau (2002) ArticleTitle‘On Integral Measures of the Neutral, Barotropic Planetary Boundary Layers’ Boundary-Layer Meteorol. 104 371–379 Occurrence Handle10.1023/A:1016540808958

    Article  Google Scholar 

  • S. S. Zilitinkevich I. N. Esau (2003) ArticleTitle‘The Effect of Baroclinicity on the Depth of Neutral and Stable Planetary Boundary Layers’ Quart. J. Roy. Meteorol. Soc. 129 3339–3356 Occurrence Handle10.1256/qj.02.94

    Article  Google Scholar 

  • S. Zilitinkevich D. V. Mironov (1996) ArticleTitle‘A Multi-Limit Formulation for the Equilibrium Depth of a Stably Stratified Boundary Layer’ Boundary-Layer Meteorol. 81 325–351

    Google Scholar 

  • S. S. Zilitinkevich V. L. Perov J. C. King (2002b) ArticleTitle‘Near-Surface Turbulent Fluxes in Stable Stratification: Calculation Techniques for use in General-Circulation Models’ Quart. J. Roy. Meteorol. Soc. 128 1571–1587

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Galperin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sukoriansky, S., Galperin, B. & Perov, V. ‘Application of a New Spectral Theory of Stably Stratified Turbulence to the Atmospheric Boundary Layer over Sea Ice’. Boundary-Layer Meteorol 117, 231–257 (2005). https://doi.org/10.1007/s10546-004-6848-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-004-6848-4

Keywords

Navigation