Skip to main content
Log in

Pathophysiology of fatty acid oxidation disorders

  • FATTY ACID OXIDATION
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Mitochondrial fatty acid oxidation represents an important pathway for energy generation during periods of increased energy demand such as fasting, febrile illness and muscular exertion. In liver, the primary end products of the pathway are ketone bodies, which are released into the circulation and provide energy to tissues that are not able to oxidize fatty acids such as brain. Other tissues, such as cardiac and skeletal muscle are capable of direct utilization of the fatty acids as sources of energy. This article provides an overview of the pathogenesis of fatty acid oxidation disorders. It describes the different tissue involvement with the disease processes and correlates disease phenotype with the nature of the genetic defect for the known disorders of the pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CACT:

carnitine-acylcarnitine translocase

CPT:

carnitine palmitoyltransferase

FAO:

fatty acid oxidation

GDH:

glutamate dehydrogenase

LCHAD:

long-chain 3-hydroxyacyl-CoA dehydrogenase

M/SCHAD:

medium- and short-chain 3-hydroxyacyl-CoA dehydrogenase

MCAD:

medium-chain acyl-CoA dehydrogenase

SCAD:

short-chain acyl-CoA dehydrogenase

TFP:

(mitochondrial) trifunctional protein

VLCAD:

very long-chain acyl-CoA dehydrogenase

References

  • Bennett MJ, Russell LK, Tokunaga C et al (2006) Reye-like syndrome resulting from novel missense mutations in mitochondrial medium- and short-chain l-3-hydroxy acyl-CoA dehydrogenase. Mol Genet Metab 89:74–79

    Article  CAS  PubMed  Google Scholar 

  • Brown NF, Mullur RS, Subramanian I et al (2001) Molecular characterization of L-CPT1 deficiency in six patients: insights into function of the native enzyme. J Lipid Res 42:1134–1142

    CAS  PubMed  Google Scholar 

  • Carruth A, Strauss A, Bennett M, Narayan S, Ernst LM (2009) Mutations in long-chain 3-hydroxyacyl-CoA dehydrogenase and placental maternal floor infarct/massive perivillous fibrin deposition. Proceedings of the Society for Pediatric Pathology Interim Meeting, October, 2009, Philadelphia, PA [abstract]

  • Clayton PT, Eaton S, Aynsley-Green A et al (2001) Hyperinsulinism in short-chain l-3-hydroxyacyl-CoA dehydrogenase deficiency reveals the importance of β-oxidation in insulin secretion. J Clin Invest 108:457–465

    CAS  PubMed  Google Scholar 

  • den Boer MEJ, Wanders RJA, Morris AAM, IJlst L, Heymans HS, Wijburg FA (2002) LCHAD deficiency: clinical presentation and follow up in 50 patients. Pediatrics 109:99–104

    Article  Google Scholar 

  • Filling C, Keller B, Hirschberg D et al (2008) Role of short-chain hydroxyacyl-CoA dehydrogenase in SCHAD deficiency. Biochem Biophys Res Commun 368:6–11

    Article  CAS  PubMed  Google Scholar 

  • Gillingham MB, Banta-Wright SA, Hermerath CA et al (2006) CPT1A P479L variant identified in Alaska natives by expanded newborn screening. J Inherit Metab Dis 29(Suppl 1; 85) [abstract]

  • Greenberg CR, Dilling LA, Thompson GR et al (2009) The paradox of the carnitine palmitoyltransferase type 1a P479L variant in Canadian Aboriginal populations. Mol Genet Metab 96:201–207

    Article  CAS  PubMed  Google Scholar 

  • Hussain K, Clayton PT, Krywawych S et al (2005) Hyperinsulinism of infancy associated with a novel splice site mutation in the SCHAD gene. J Pediatr 146:706–708

    Article  CAS  PubMed  Google Scholar 

  • Iafolla AK, Thompson RJ, Roe CR (1994) Medium-chain acyl-CoA dehydrogenase deficiency: clinical course in 120 affected children. J Pediatr 124:409–415

    Article  CAS  PubMed  Google Scholar 

  • Ibdah J, Bennett MJ, Rinaldo P et al (1999) A fetal fatty acid oxidation disorder as a cause of liver disease in pregnant women. N Engl J Med 340:1723–1731

    Article  CAS  PubMed  Google Scholar 

  • Jethva R, Ficicioglu C (2008) Clinical outcomes of infants with short-chain acyl-coenzyme A dehydrogenase deficiency (SCADD) detected by newborn screening. Mol Genet Metab 95:241–242

    Article  CAS  PubMed  Google Scholar 

  • Jethva R, Bennett MJ, Vockley J (2008) Short-chain acyl-coenzyme A dehydrogenase deficiency. Mol Genet Metab 95:195–200

    Article  CAS  PubMed  Google Scholar 

  • Kapoor RR, James C, Flanagan SE, Ellard S, Eaton S, Hussain K (2009) 3-Hydroxyacyl-coenzyme A dehydrogenase deficiency and hyperinsulinaemic hypoglycemia: characterization of a novel mutation and severe dietary protein sensitivity. J Clin Endocrinol Metab 94:2221–2225

    Article  CAS  PubMed  Google Scholar 

  • Matern D, Shehata BM, Shekhawat P, Strauss AW, Bennett MJ, Rinaldo P (2001) Placental floor infarction complicating the pregnancy of a fetus with long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency. Mol Genet Metab 72:265–268

    Article  CAS  PubMed  Google Scholar 

  • McGarry JD, Brown NF (1997) The mitochondrial carnitine palmitoyltransferase system: from concept to molecular analysis. Eur J Biochem 244:1–6

    Article  CAS  PubMed  Google Scholar 

  • Molven A, Matre GE, Duran M et al (2004) Familial hyperinsulinemic hypoglycemia caused by a defect in the SCHAD enzyme of mitochondrial fatty acid oxidation. Diabetes 53:221–227

    Article  CAS  PubMed  Google Scholar 

  • Oey NA, Ruiter JPN, Attie-Bitach T, IJlst L, Wanders RJA, Wijburg FA (2006) Fatty acid oxidation in the human fetus: implications for fetal and adult disease. J Inherit Metab Dis 29:71–75

    Article  CAS  PubMed  Google Scholar 

  • Olpin SE, Afifi A, Clark S et al (2003) Mutation and biochemical analysis in carnitine palmitoyltransferase type II (CPT II) deficiency. J Inherit Metab Dis 26:543–557

    Article  CAS  PubMed  Google Scholar 

  • Pedersen CB, Kolvraa S, Kolvraa A et al (2008) The ACADS gene variation spectrum in 114 patients with short-chain acyl-CoA dehydrogenase (SCAD) deficiency is dominated by missense variations leading to protein misfolding at the cellular level. Hum Genet 124:43–56

    Article  CAS  PubMed  Google Scholar 

  • Price NT, van der Leij FR, Jackson VN et al (2002) Anovel brain-expressed protein related to carnitine palmitoyltransferase 1. Genomics 80:433–442

    Article  CAS  PubMed  Google Scholar 

  • Rinaldo P, Matern D, Bennett MJ (2002) Fatty acid oxidation disorders. Annu Rev Physiol 64:477–502

    Article  CAS  PubMed  Google Scholar 

  • Shekhawat P, Bennett MJ, Sadovsky V, Nelson DM, Rakheja D, Strauss AW (2003) Human placenta metabolizes fatty acids: implications for fetal fatty acid oxidation disorders and maternal liver diseases. Am J Physiol Endocrinol Metabol 284:E1098–E1105

    CAS  Google Scholar 

  • Shekhawat P, Sonne S, Matern D et al (2007) Spontaneous development of intestinal and colonic atrophy and inflammation in the carnitine deficient jvs (OCT2N−/−) mice. Mol Genet Metab 92:315–324

    Article  CAS  PubMed  Google Scholar 

  • Snider MD, McGarry JD, Hanson RW (2006) Lipid metabolism 1: synthesis, storage and utilization of fatty acids and triacylglycerols. In: Devlin TM (ed) Textbook of biochemistry with clinical correlations, 6th edn. Wiley, Hoboken, pp 662–694

    Google Scholar 

  • Stanley CA, Lieu YK, Hsu BY et al (1998) Hyperinsulinism and hyperammonemia in infants with regulatory mutations of the glutamate dehydrogenase gene. N Engl J Med 338:1352–1357

    Article  CAS  PubMed  Google Scholar 

  • Strauss AW, Andresen BS, Bennett MJ (2009) Mitochondrial fatty acid oxidation defects. In: Sarafoglou K, Hoffmann GF, Roth KS (eds) Pediatric endocrinology and inborn errors of metabolism. McGraw-Hill, New York, pp 51–70

    Google Scholar 

  • Thuillier L, Rostane H, Droin V et al (2003) Correlation between genotype, metabolic data, and clinical presentation in carnitine palmitoyltransferase 2 deficiency. Hum Mutat 21:493–501

    Article  CAS  PubMed  Google Scholar 

  • Tyni T, Kivela T, Lappi M, Summainen P, Nikoskelainen E, Pihko H (1998) Ophthalmic findings in LCHAD deficiency caused by the G1528C mutation. Ophthalmology 105:810–824

    Article  CAS  PubMed  Google Scholar 

  • Wilcken B, Leung KC, Hammond J, Kamath R, Leonard JV (1993) Pregnancy and fetal LCHAD deficiency. Lancet 341:407–408

    Article  CAS  PubMed  Google Scholar 

  • Wilcken B, Haas M, Joy P et al (2007) Outcome of neonatal screening for medium-chain acyl-CoA dehydrogenase deficiency in Australia: a cohort study. Lancet 369:37–42

    Article  CAS  PubMed  Google Scholar 

  • Wood PA, Amendt BA, Rhead WJ, Millington DS, Inoue F, Armstrong D (1989) Short-chain acyl-coenzyme A deficiency in mice. Pediatr Res 25:38–43

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Bennett.

Additional information

Communicated by: Ertan Mayatepek

Competing interest: None declared.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bennett, M.J. Pathophysiology of fatty acid oxidation disorders. J Inherit Metab Dis 33, 533–537 (2010). https://doi.org/10.1007/s10545-010-9170-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-010-9170-y

Keywords

Navigation