Skip to main content
Log in

The biochemical basis of hereditary fructose intolerance

  • Review
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Hereditary fructose intolerance is a rare, but potentially lethal, inherited disorder of fructose metabolism, caused by mutation of the aldolase B gene. Treatment currently relies solely on dietary restriction of problematic sugars. Biochemical study of defective aldolase B enzymes is key to revealing the molecular basis of the disease and providing a stronger basis for improved treatment and diagnosis. Such studies have revealed changes in enzyme activity, stability and oligomerisation. However, linking these changes to disease phenotypes has not always been straightforward. This review gives a general overview of the features of hereditary fructose intolerance, then concentrates on the biochemistry of the AP variant (Ala149Pro variant of aldolase B) and molecular pathological consequences of mutation of the aldolase B gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ATP:

Adenosine triphosphate

AP-aldolase:

Ala149Pro variant of aldolase B

ARMS:

Amplification refractory mutation system

DHAP:

Dihydroxyacetone phosphate

GKRP:

Glucokinase regulatory protein

HFI:

Hereditary fructose intolerance

F 1-P:

Fructose 1-phosphate

OMIM:

Online Mendelian Inheritance in Man

PDB:

Protein Data Bank

RFLP:

Restriction fragment-length polymorphism

References

  • Ali M, Rellos P, Cox TM (1998) Hereditary fructose intolerance. J Med Genet 35:353–365

    Article  CAS  PubMed  Google Scholar 

  • Baerlocher K, Gitzelmann R, Steinmann B, Gitzelmann-Cumarasamy N (1978) Hereditary fructose intolerance in early childhood: a major diagnostic challenge. Survey of 20 symptomatic cases. Helv Paediatr Acta 33:465–487

    CAS  PubMed  Google Scholar 

  • Burrant CF, Takeda J, Brot-Laroche E, Bell GI, Davidson NO (1992) Fructose transporter in human spermatozoa and small intestine is GLUT 5. J Biol Chem 267:14523–14526

    Google Scholar 

  • Cox TM (1994) Aldolase B and fructose intolerance. FASEB J 8:62–71

    CAS  PubMed  Google Scholar 

  • Crome L (1962) A case of galactosaemia with the pathological and neuropathological findings. Arch Dis Child 37:415–421

    Article  CAS  PubMed  Google Scholar 

  • Cross NC, Tolan DR, Cox TM (1988) Catalytic deficiency of human aldolase B in hereditary fructose intolerance caused by a common missense mutation. Cell 53:881–885

    Article  CAS  PubMed  Google Scholar 

  • Cross NC, de Franchis R, Sebastio G et al (1990) Molecular analysis of aldolase B genes in hereditary fructose intolerance. Lancet 335:306–309

    Article  CAS  PubMed  Google Scholar 

  • Dalby AR, Tolan DR, Littlechild JA (2001) The structure of human liver fructose-1, 6-bisphosphate aldolase. Acta Crystallogr D Biol Crystallogr 57:1526–1533

    Article  CAS  PubMed  Google Scholar 

  • Davit-Spraul A, Costa C, Zater M et al (2008) Hereditary fructose intolerance: frequency and spectrum mutations of the aldolase B gene in a large patients cohort from France-identification of eight new mutations. Mol Genet Metab 94:443–447

    Article  CAS  PubMed  Google Scholar 

  • Deng Y, Smith DL (1999) Hydrogen exchange demonstrates three domains in aldolase unfold sequentially. J Mol Biol 294:247–258

    Article  CAS  PubMed  Google Scholar 

  • Esposito G, Vitagliano L, Santamaria R, Viola A, Zagari A, Salvatore F (2002) Structural and functional analysis of aldolase B mutants related to hereditary fructose intolerance. FEBS Lett 531:152–156

    Article  CAS  PubMed  Google Scholar 

  • Esposito G, Santamaria R, Vitagliano L et al (2004) Six novel alleles identified in Italian hereditary fructose intolerance patients enlarge the mutation spectrum of the aldolase B gene. Hum Mutat 24:534

    Article  PubMed  CAS  Google Scholar 

  • Froesch ER (1976) Disorders of fructose metabolism. Clin Endocrinol Metab 5:599–611

    Article  CAS  PubMed  Google Scholar 

  • Fridovich-Keil (2006) Galactosemia: the good, the bad, and the unknown. J Cell Physiol 209:701-705

  • Gitzelmann R (1995) Galactose-1-phosphate in the pathophysiology of galactosemia. Eur J Pediatr 154:S45–S49

    Article  CAS  PubMed  Google Scholar 

  • Gruchota J, Pronicka E, Korniszewski L et al (2006) Aldolase B mutations and prevalence of hereditary fructose intolerance in a Polish population. Mol Genet Metab 87:376–378

    Article  CAS  PubMed  Google Scholar 

  • Holton JB, Walter JH, Tyfield LA (2001) Galactosemia. In: Scriver CR, Beaudet L, Valle D, Sly WS, Childs B, Kinzler KW, Vogelstein B (eds) The metabolic and molecular bases of inherited disease (8th edn). McGraw-Hill, Columbus, pp 1553–1587

    Google Scholar 

  • Hommes FA (1993) Inborn errors of fructose metabolism. Am J Clin Nutr 58:788S–795S

    CAS  PubMed  Google Scholar 

  • Hudson FP, Ireland JT, Ockenden BG, White-Jones RH (1954) Diagnosis and treatment of galactosaemia. Br Med J 1:242–245

    Article  CAS  PubMed  Google Scholar 

  • Jaeken J, Pirard M, Adamowicz M, Pronicka E, van Schaftingen E (1996) Inhibition of phosphomannose isomerase by fructose 1-phosphate: an explanation for defective N-glycosylation in hereditary fructose intolerance. Pediatr Res 40:764–766

    Article  CAS  PubMed  Google Scholar 

  • Jamar S, Evenepoel P, Kuypers D, Maes B, Vanrenterghem Y (2003) A young patient with unexplained acute hepatorenal dysfunction. Nephrol Dial Transplant 18:1220–1222

    Article  PubMed  Google Scholar 

  • James CL, Rellos P, Ali M, Heeley AF, Cox TM (1996) Neonatal screening for hereditary fructose intolerance: frequency of the most common mutant aldolase B allele (A149P) in the British population. J Med Genet 33:837–841

    Article  CAS  PubMed  Google Scholar 

  • Kullberg-Lindh C, Hannoun C, Lindh M (2002) Simple method for detection of mutations causing hereditary fructose intolerance. J Inherit Metab Dis 25:571–575

    Article  CAS  PubMed  Google Scholar 

  • Lameire N, Mussche M, Baele G, Kint J, Ringoir S (1978) Hereditary fructose intolerance: a difficult diagnosis in the adult. Am J Med 65:416–423

    Article  CAS  PubMed  Google Scholar 

  • Lebherz HG, Rutter WJ (1969) Distribution of fructose diphosphate aldolase variants in biological systems. Biochemistry 8:109–121

    Article  CAS  PubMed  Google Scholar 

  • Lench NJ, Telford EA, Andersen SE, Moynihan TP, Robinson PA, Markham AF (1996) An EST and STS-based YAC conting map of human chromosome 9q22.3. Genomics 38:199–205

    Article  CAS  PubMed  Google Scholar 

  • Levin B, Oberholzer VG, Snodgrass GJ, Stimmler L, Wilmers MJ (1963) Fructosaemia: an inborn error of fructose metabolism. Arch Dis Child 38:220–230

    Article  CAS  PubMed  Google Scholar 

  • Locher S (1987) Acute liver and kidney failure following sorbitol infusion in a 28-year-old patient with undiagnosed fructose intolerance. Anasth Intensivther Notfallmed 22:194–197

    Article  CAS  PubMed  Google Scholar 

  • Malay AD, Procious SL, Tolan DR (2002) The temperature dependence of activity and structure for the most prevalent mutant aldolase B associated with hereditary fructose intolerance. Arch Biochem Biophys 408:295–304

    Article  CAS  PubMed  Google Scholar 

  • Malay AD, Allen KN, Tolan DR (2005) Structure of the thermolabile mutant aldolase B, A149P: molecular basis of hereditary fructose intolerance. J Mol Biol 347:135–144

    Article  CAS  PubMed  Google Scholar 

  • Mayes PA (1993) Intermediary metabolism of fructose. Am J Clin Nutr 58:754S–765S

    CAS  PubMed  Google Scholar 

  • Mock DM, Perman JA, Thaler M, Morris RC (1983) Chronic fructose intoxication after infancy in children with hereditary fructose intolerance. A cause of growth retardation. N Engl J Med 309:764–770

    Article  CAS  PubMed  Google Scholar 

  • Oberhaensli RD, Rajagopalan B, Taylor DJ et al (1987) Study of hereditary fructose intolerance by use of 31P magnetic resonance spectroscopy. Lancet 2:931–934

    Article  CAS  PubMed  Google Scholar 

  • Odièvre M, Gentil C, Gautier M, Alagille D (1978) Hereditary fructose intolerance in childhood. Diagnosis, management, and course in 55 patients. Am J Dis Child 132:605–608

    PubMed  Google Scholar 

  • Penhoet E, Rajkumar T, Rutter WJ (1966) Multiple forms of fructose diphosphate aldolase in mammalian tissues. Proc Natl Acad Sci USA 56:1275–1282

    Article  CAS  PubMed  Google Scholar 

  • Penhoet EE, Kochman M, Rutter WJ (1969) Molecular and catalytic properties of aldolase C. Biochemistry 8:4396–4402

    Article  CAS  PubMed  Google Scholar 

  • Pezza JA, Choi KH, Berardini TZ, Beernink PT, Allen KN, Tolan DR (2003) Spatial clustering of isozyme-specific residues reveals unlikely determinants of isozyme specificity in fructose-1, 6-bisphosphate aldolase. J Biol Chem 278:17307–17313

    Article  CAS  PubMed  Google Scholar 

  • Phillips MJ, Little JA, Ptak TW (1968) Subcellular pathology of hereditary fructose intolerance. Am J Med 44:910–921

    Article  CAS  PubMed  Google Scholar 

  • Pronicka E, Adamowicz M, Kowalik A et al (2007) Elevated carbohydrate-deficient transferrin (CDT) and its normalization on dietary treatment as a useful biochemical test for hereditary fructose intolerance and galactosemia. Pediatr Res 62:101–105

    Article  CAS  PubMed  Google Scholar 

  • Quintana E, Sturiale L, Montero R et al (2009) Secondary disorders of glycosylation in inborn errors of fructose metabolism. J Inherit Metab Dis. doi:10.1007/s10545-009-1219-4)

  • Rellos P, Ali M, Vidailhet M, Sygusch J, Cox TM (1999) Alteration of substrate specificity by a naturally-occurring aldolase B mutation (Ala337 → Val) in fructose intolerance. Biochem J 340:321–327

    Article  CAS  PubMed  Google Scholar 

  • Rellos P, Sygusch J, Cox TM (2000) Expression, purification and characterization of natural mutants of human aldolase B. Role of quaternary structure in catalysis. J Biol Chem 275:1145–1151

    Article  CAS  PubMed  Google Scholar 

  • Santamaria R, Vitagliano L, Tamasi S et al (1999) Novel six-nucleotide deletion in the hepatic fructose-1, 6-bisphosphate aldolase gene in a patient with hereditary fructose intolerance and enzyme structure-function implications. Eur J Hum Genet 7:409–414

    Article  CAS  PubMed  Google Scholar 

  • Santamaria R, Esposito G, Vitagliano L et al (2000) Functional and molecular modelling studies of two hereditary fructose intolerance-causing mutations at arginine 303 in human liver aldolase. Biochem J 350:823–828

    Article  CAS  PubMed  Google Scholar 

  • Santer R, Rischewski J, von Weihe M et al (2005) The spectrum of aldolase B (ALDOB) mutations and the prevalence of hereditary fructose intolerance in Central Europe. Hum Mutat 25:594

    Article  PubMed  Google Scholar 

  • Steinmann B (2007) Disorders of fructose metabolism. In: Goldman L, Ausiello DA (eds) Cecil medicine. Elsevier Health Sciences, Amsterdam, Chapter 220

    Google Scholar 

  • Steinmann B, Gitzelmann R (1981) The diagnosis of hereditary fructose intolerance. Helv Paediatr Acta 36:297–316

    CAS  PubMed  Google Scholar 

  • Sturiale L, Barone R, Palmigiano A et al (2008) Multiplexed glycoproteomic analysis of glycosylation disorders by sequential yolk immunoglobulins immunoseparation and MALDI-TOF MS. Proteomics 8:3822–3832

    Article  CAS  PubMed  Google Scholar 

  • Sygusch J, Beaudry D, Allaire M (1987) Molecular architecture of rabbit skeletal muscle aldolase at 2.7-Å resolution. Proc Natl Acad Sci USA 84:7846–7850

    Article  CAS  PubMed  Google Scholar 

  • Tolan DR, Schuler B, Beernink PT, Jaenicke R (2003) Thermodynamic analysis of the dissociation of the aldolase tetramer substituted at one or both of the subunit interfaces. Biol Chem 384:1463–1471

    Article  CAS  PubMed  Google Scholar 

  • Van Den Berghe G, Hue L, Hers HG (1973) Effect of administration of the fructose on the glycogenolytic action of glucagon. An investigation of the pathogeny of hereditary fructose intolerance. Biochem J 134:637–645

    Google Scholar 

  • Van Schaftingen E (1989) A protein from rat liver confers to glucokinase the property of being antagonistically regulated by fructose 6-phosphate and fructose 1-phosphate. Eur J Biochem 179:179–184

    Article  PubMed  Google Scholar 

  • Veiga-da-Cunha M, Van Schaftingen E (2002) Identification of fructose 6-phosphate and fructose 1-phosphate-binding residues in the regulatory protein of glucokinase. J Biol Chem 277:8466–8473

    Article  CAS  PubMed  Google Scholar 

  • Wasserman D, Hoekstra JH, Tolia V et al (1996) Molecular analysis of the fructose transporter gene (GLUT5) in isolated fructose malabsorption. J Clin Invest 98:2398–2402

    Article  CAS  PubMed  Google Scholar 

  • Wong DA (2009) Fructose intolerance, hereditary. In: Lang F (ed) Encyclopedia of molecular mechanisms of disease. Springer-Verlag, Berlin, pp 673–675

    Google Scholar 

Download references

Acknowledgements

We thank the anonymous referees for many valuable suggestions. NB gratefully acknowledges the support of the Arthritis Research Campaign (UK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Timson.

Additional information

Communicated by: Gerard T. Berry

References to electronic databases: OMIM: 229600, EC: 4.1.2.13

Competing interest: None declared.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouteldja, N., Timson, D.J. The biochemical basis of hereditary fructose intolerance. J Inherit Metab Dis 33, 105–112 (2010). https://doi.org/10.1007/s10545-010-9053-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-010-9053-2

Keywords

Navigation