Skip to main content
Log in

The pharmacological chaperone 1-deoxygalactonojirimycin increases α-galactosidase A levels in Fabry patient cell lines

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

Summary

Fabry disease is an X-linked lysosomal storage disorder caused by mutations in the gene encoding α-galactosidase A (α-Gal A), with consequent accumulation of its major glycosphingolipid substrate, globotriaosylceramide (GL-3). Over 500 Fabry mutations have been reported; approximately 60% are missense. The iminosugar 1-deoxygalactonojirimycin (DGJ, migalastat hydrochloride, AT1001) is a pharmacological chaperone that selectively binds α-Gal A, increasing physical stability, lysosomal trafficking, and cellular activity. To identify DGJ-responsive mutant forms of α-Gal A, the effect of DGJ incubation on α-Gal A levels was assessed in cultured lymphoblasts from males with Fabry disease representing 75 different missense mutations, one insertion, and one splice-site mutation. Baseline α-Gal A levels ranged from 0 to 52% of normal. Increases in α-Gal A levels (1.5- to 28-fold) after continuous DGJ incubation for 5 days were seen for 49 different missense mutant forms with varying EC50 values (820 nmol/L to >1 mmol/L). Amino acid substitutions in responsive forms were located throughout both structural domains of the enzyme. Half of the missense mutant forms associated with classic (early-onset) Fabry disease and a majority (90%) associated with later-onset Fabry disease were responsive. In cultured fibroblasts from males with Fabry disease, the responses to DGJ were comparable to those of lymphoblasts with the same mutation. Importantly, elevated GL-3 levels in responsive Fabry fibroblasts were reduced after DGJ incubation, indicating that increased mutant α-Gal A levels can reduce accumulated substrate. These data indicate that DGJ merits further evaluation as a treatment for patients with Fabry disease with various missense mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DGJ:

1-deoxygalactonojirimycin hydrochloride (AT1001: migalastat hydrochloride)

EC50 :

effective concentration 50% (the concentration of DGJ yielding 50% of the maximal effect)

GalNac:

N-acetyl-d-galactosamine

GL-3:

globotriaosylceramide

GLA :

gene encoding α-Gal A

α-Gal A:

α-galactosidase A

4-MU:

4-methylumbelliferone

4-MUG:

4-MU-α-d-galactopyranoside

References

  • Asano N, Ishii S, Kizu H, et al (2000) In vitro inhibition and intracellular enhancement of lysosomal alpha-galactosidase A activity in Fabry lymphoblasts by 1-deoxygalactonojirimycin and its derivatives. Eur J Biochem 267: 4179–4186. doi:10.1046/j.1432-1327.2000.01457.x.

    Article  PubMed  CAS  Google Scholar 

  • Askari H, Kaneski C, Semino-Mora C, et al (2007) Cellular and tissue localization of globotriaosylceramide in Fabry disease. Virchows Arch 451: 823–834. doi:10.1007/s00428-007-0468-6.

    Article  PubMed  CAS  Google Scholar 

  • Bekri S, Enica A, Ghafari T, et al (2005) Fabry disease in patients with end-stage renal failure: the potential benefits of screening. Nephron Clin Pract 101: c33–38. doi:10.1159/000085709.

    Article  Google Scholar 

  • Bishop D, Grabowski G, Desnick R (1981) Fabry disease: An asymptomatic hemizygote with significant residual alpha-galactosidase A activity. Am J Hum Genet 33: 71A.

    Google Scholar 

  • Brady RO, Gal AE, Bradley RM, Martensson E, Warshaw AL, Laster L (1967) Enzymatic defect in Fabry’s disease: ceramidetrihexosidase deficiency. N Engl J Med 276: 1163–1167.

    PubMed  CAS  Google Scholar 

  • Branton MH, Schiffmann R, Sabnis SG, et al (2002) Natural history of Fabry renal disease: influence of alpha-galactosidase A activity and genetic mutations on clinical course. Medicine 81: 122–138. doi:10.1097/00005792-200203000-00003.

    Article  PubMed  CAS  Google Scholar 

  • Chimenti C, Pieroni M, Morgante E, et al (2004) Prevalence of Fabry disease in female patients with late-onset hypertrophic cardiomyopathy. Circulation 110: 1047–1053. doi:10.1161/01.CIR.0000139847.74101.03.

    Article  PubMed  CAS  Google Scholar 

  • Desnick R, Ioannou Y, Eng C (2001) alpha-Galactosidase A deficiency; Fabry disease. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds; Childs B, Kinzler KW, Vogelstein B, assoc. eds. The Metabolic and Molecular Bases of Inherited Disease, 8th edn. New York: McGraw-Hill, 3507–3534.

    Google Scholar 

  • Fan J-Q (2003) A contradictory treatment for lysosomal storage disorders: inhibitors enhance mutant enzyme activity. Trends Pharmacol Sci 24: 355–360. doi:10.1016/S0165-6147(03)00158-5.

    Article  PubMed  CAS  Google Scholar 

  • Fan J-Q, Ishii S, Asano N, Suzuki Y (1999) Accelerated transport and maturation of lysosomal α-galactosidase A in Fabry lymphoblasts by an enzyme inhibitor. Nature Med 5: 112–115. doi:10.1038/4801.

    Article  PubMed  CAS  Google Scholar 

  • Garman S (2007) Structure–function relationships in alpha-galactosidase A. Acta Paediatr Suppl 96: 6–16. doi:10.1111/j.1651-2227.2007.00097.x.

    Article  Google Scholar 

  • Garman SC, Garboczi DN (2004) The molecular defect leading to Fabry disease: structure of human alpha-galactosidase. J Mol Biol 337: 319–335. doi:10.1016/j.jmb.2004.01.035.

    Article  PubMed  CAS  Google Scholar 

  • Guex N, Peitsch M (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18: 2714–2723. doi:10.1002/elps.1150181505.

    Article  PubMed  CAS  Google Scholar 

  • Ioannou YA, Bishop DF, Desnick RJ (1992) Overexpression of human alpha-galactosidase A results in its intracellular aggregation, crystallization in lysosomes, and selective secretion. J Cell Biol 119: 1137–1150. doi:10.1083/jcb.119.5.1137.

    Article  PubMed  CAS  Google Scholar 

  • Ioannou YA, Zeidner KM, Grace ME, Desnick R (1998) Human alpha-galactosidase A: glycosylation site 3 is essential for enzyme solubility. Biochem J 332: 789–797.

    PubMed  CAS  Google Scholar 

  • Ishii S, Kase R, Okumiya T, Sakuraba H, Suzuki Y (1996) Aggregation of the inactive form of human alpha-galactosidase in the endoplasmic reticulum. Biochem Biophys Res Commun 220: 812–815. doi:10.1006/bbrc.1996.0486.

    Article  PubMed  CAS  Google Scholar 

  • Ishii S, Chang HH, Kawasaki K, et al (2007) Mutant alpha-galacatosidase A enzymes identified in Fabry patients with residual enzyme activity: Biochemical characterization and restoration of normal intracellular processing by 1-deoxygalactonojirimycin. Biochem J 406: 285–295. doi:10.1042/BJ20070479.

    Article  PubMed  CAS  Google Scholar 

  • Ishii S, Chang H, Yoshioka H, et al (2009) Preclinical efficacy and safety of 1-deoxygalactonojirimycin in mice for Fabry disease. J Pharmacol Exp Ther 328(3): 723–731.

    Article  PubMed  CAS  Google Scholar 

  • Khanna R, Benjamin ER, Soska R, et al (2007) The pharmacological chaperone AT1001 reduces globotriaosylceramide substrate levels in Fabry transgenic mice and increases α-galactosidase. A levels in vitro, in vivo and in healthy volunteers. Abstract 2250/W. Presented at the American Society of Human Genetics Conference, San Diego, October 23–27, 2007.

  • Kint JA (1970) Fabry’s disease: alpha-galactosidase deficiency. Science 167: 1268–1269. doi:10.1126/science.167.3922.1268.

    Article  PubMed  CAS  Google Scholar 

  • Kotanko P, Kramar R, Devrnja D, et al (2004) Results of a nationwide screening for Anderson-Fabry disease among dialysis patients. J Am Soc Nephrol 15: 1323–1329. doi:10.1097/01.ASN.0000124671.61963.1E.

    Article  PubMed  CAS  Google Scholar 

  • Lemansky P, Bishop D, Desnick R, Hasilik A, von Figura K (1987) Synthesis and processing of alpha-galactosidase A in human fibroblasts. Evidence for different mutations in Fabry disease. J Biol Chem 262: 2062–2065.

    PubMed  CAS  Google Scholar 

  • Matsuzawa F, Aikawa S-I, Doi H, Okumiya T, Sakuraba H (2005) Fabry disease: correlation between structural changes in α-galactosidase, and clinical and biochemical phenotypes. Hum Genet 117: 317–328. doi:10.1007/s00439-005-1300-5.

    Article  PubMed  CAS  Google Scholar 

  • Mayes JS, Scheerer JB, Sifers RN, Donaldson ML (1981) Differential assay for lysosomal alpha-galactosidases in human tissues and its application to Fabry’s disease. Clin Chim Acta 112: 247–251. doi:10.1016/0009-8981(81)90384-3.

    Article  PubMed  CAS  Google Scholar 

  • Monserrat L, Gimeno-Blanes J, Marin F, et al (2007) Prevalence of Fabry disease in a cohort of 508 untrelated patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 50: 2399–2403. doi:10.1016/j.jacc.2007.06.062.

    Article  PubMed  Google Scholar 

  • Nakao S, Takenaka T, Maeda M, et al (1995) An atypical variant of Fabry’s disease in men with left ventricular hypertrophy. N Engl J Med 333: 288–293. doi:10.1056/NEJM199508033330504.

    Article  PubMed  CAS  Google Scholar 

  • Nakao S, Kodama C, Takenaka T, et al (2003) Fabry disease: detection of undiagnosed hemodialysis patients and identification of a ‘renal variant’ phenotype. Kidney Int 64: 801–807. doi:10.1046/j.1523-1755.2003.00160.x.

    Article  PubMed  Google Scholar 

  • Neitzel H (1986) A routine method for the establishment of permanent growing lymphoblastoid cell lines. Hum Genet 73: 320–326. doi:10.1007/BF00279094.

    Article  PubMed  CAS  Google Scholar 

  • Okumiya T, Ishii S, Takenaka T, et al (1995) Galactose stabilizes various missense mutants of alpha-galactosidase in Fabry disease. Biochem Biophys Res Commun 214: 1219–1224. doi:10.1006/bbrc.1995.2416.

    Article  PubMed  CAS  Google Scholar 

  • Rolfs A, Bottcher T, Zschiesche M, et al (2005) Prevalence of Fabry disease in patients with cryptogenic stroke: a prospective study. Lancet 366: 1794–1796. doi:10.1016/S0140-6736(05)67635-0.

    Article  PubMed  Google Scholar 

  • Sachdev B, Takenaka T, Teraguchi H, et al (2002) Prevalence of Anderson-Fabry disease in male patients with late onset hypertrophic cardiomyopathy. Circulation 105: 1407–1411. doi:10.1161/01.CIR.0000012626.81324.38.

    Article  PubMed  CAS  Google Scholar 

  • Schiffmann R, Germain DP, Castelli J, et al (2008) Phase 2 clinical trials of the pharmacological chaperone AT1001 for the treatment of Fabry disease. Abstract 768/T. Presented at the American Society of Human Genetics Conference, Philadelphia, November 11–15, 2008.

  • Shabbeer J, Yasuda M, Luca E, Desnick R (2002) Fabry disease: 45 novel mutations in the alpha-galactosidase A gene causing the classical phenotype. Mol Genet Metab 76: 23–30. doi:10.1016/S1096-7192(02)00012-4.

    Article  PubMed  CAS  Google Scholar 

  • Shabbeer J, Yasuda M, Benson S, Desnick R (2006) Fabry disease: Identification of 50 novel α-galactosidase A mutations causing the classic phenotype and three-dimensional structural analysis of 29 missense mutations. Hum Genomics 2: 297–309.

    PubMed  CAS  Google Scholar 

  • Shin S-H, Murray G, Kluepfel-Stahl S, et al (2007) Screening for pharmacological chaperones in Fabry disease. Biochem Biophys Res Commun 359: 168–173. doi:10.1016/j.bbrc.2007.05.082.

    Article  PubMed  CAS  Google Scholar 

  • Shin S-H, Kluepfel-Stahl S, Cooney A, et al (2008) Prediction of response of mutated alpha-galactosidase A to a pharmacological chaperone. Pharmacogenet Genomics 18: 773–780. doi:10.1097/FPC.0b013e32830500f4.

    Article  PubMed  CAS  Google Scholar 

  • Spada M, Pagliardini S, Yasuda M, et al (2006) High incidence of later-onset Fabry disease revealed by newborn screening. Am J Hum Genet 79: 31–40. doi:10.1086/504601.

    Article  PubMed  CAS  Google Scholar 

  • Stenson PD, Ball EV, Mort M, et al (2003) Human gene mutation database (HGMD): 2003 update. Hum Mutat 21: 577–581. doi:10.1002/humu.10212.

    Article  PubMed  CAS  Google Scholar 

  • von Scheidt W, Eng C, Fitzmaurice T, et al (1991) An atypical variant of Fabry’s disease with manifestations confined to the myocardium. N Engl J Med 324: 395–399.

    Google Scholar 

  • Yam GH, Zuber C, Roth J (2005) A synthetic chaperone corrects the trafficking defect and disease phenotype in a protein misfolding disorder. FASEB J 19: 12–18. doi:10.1096/fj.04-2375com.

    Article  PubMed  CAS  Google Scholar 

  • Yam GH, Bosshard N, Zuber C, Steinmann B, Roth J (2006) Pharmacological chaperone corrects lysosomal storage in Fabry disease caused by trafficking-incompetent variants. Am J Physiol Cell Physiol 290: C1076–1082. doi:10.1152/ajpcell.00426.2005.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. R. Benjamin.

Additional information

Communicating editor: Gregory Pastores

Competing interests: All authors are shareholders, current or former employees of Amicus Therapeutics.

References to electronic databases: Fabry disease: OMIM 310500. α-Galactosidase A: EC 3.2.1.22. GLA: GenBank gDNA: X14448.1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benjamin, E.R., Flanagan, J.J., Schilling, A. et al. The pharmacological chaperone 1-deoxygalactonojirimycin increases α-galactosidase A levels in Fabry patient cell lines. J Inherit Metab Dis 32, 424–440 (2009). https://doi.org/10.1007/s10545-009-1077-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-009-1077-0

Keywords

Navigation