Skip to main content
Log in

Dominant versus recessive: Molecular mechanisms in metabolic disease

  • Review
  • Published:
Journal of Inherited Metabolic Disease

Summary

Inborn errors of metabolism used to be regarded as simple monogenic traits, but a closer look at how different alleles of a gene determine different phenotypes shows that the molecular mechanisms in the individual case are often complicated. Most metabolic disorders represent a spectrum of phenotypes from normal via attenuated to severe (and sometimes prenatally fatal), and disease manifestation is often influenced by other specific genetic or exogenous factors. The terms ‘dominant’ or ‘recessive’ relate to the functional consequences of differing alleles in the (compound) heterozygous individual; the terms are irrelevant for homozygous individuals and inappropriate for X-linked disorders. Mutations affecting the same amino acid residue may be associated with different inheritance patterns. True dominant inheritance in metabolism is rare; it may be found e.g. in tightly regulated biosynthetic pathways or when minor changes in metabolite concentrations have a functional effect. Some disorders such as erythropoietic protoporphyria show pseudodominant inheritance due to prevalent loss-of-function polymorphisms in the general population and are better acknowledged as recessive traits. The term ‘variable expressivity’ is not helpful with regard to autosomal recessive disorders when variable phenotypes are explained by different mutations in the respective gene. Clonal unmasking of a heterozygous mutation through somatic loss of the second allele, the main pathomechanism in inherited tumour predisposition syndromes, is rare in metabolic disorders, but focal congenital hyperinsulinism is a notable exception. Somatic mosaicism for an OTC gene mutation is given as an example of an apparently heterozygous mutation pattern in a boy with an X-linked disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abu-Amero S, Monk D, Frost J, Preece M, Stanier P, Moore GE (2008) The genetic aetiology of Silver–Russell syndrome. J Med Genet 45: 193–199. doi:10.1136/jmg.2007.053017.

    PubMed  CAS  Google Scholar 

  • Ajioka RS, Phillips JD, Kushner JP (2006) Biosynthesis of heme in mammals. Biochim Biophys Acta 1763: 723–736. doi:10.1016/j.bbamcr.2006.05.005.

    PubMed  CAS  Google Scholar 

  • Alam NA, Rowan AJ, Wortham NC, et al (2003) Genetic and functional analyses of FH mutations in multiple cutaneous and uterine leiomyomatosis, hereditary leiomyomatosis and renal cancer, and fumarate hydratase deficiency. Hum Mol Genet 12: 1241–1252.

    PubMed  CAS  Google Scholar 

  • Alfaro JA, Zheng RB, Persson M, et al (2008) ABO(H) blood group A and B glycosyltransferases recognize substrate via specific conformational changes. J Biol Chem 283: 10097–10108. doi:10.1074/jbc.M708669200.

    PubMed  CAS  Google Scholar 

  • Alonso R, Mata N, Castillo S, et al (2008) Cardiovascular disease in familial hypercholesterolaemia: influence of low-density lipoprotein receptor mutation type and classic risk factors. Atherosclerosis. Epub ahead of print.

  • Alter BP, Rosenberg PS, Brody LC (2007) Clinical and molecular features associated with biallelic mutations in FANCD1/BRCA2. J Med Genet 44: 1–9. doi:10.1136/jmg.2006.043257.

    PubMed  CAS  Google Scholar 

  • Anderson KE, Sassa S, Bishop DF, Desnick PJ (1981) Disorders of heme biosynthesis: X-linked sideroblastic anemia and the porphyrias. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The Metabolic and Molecular Bases of Inherited Disease. New York: McGraw-Hill, 2991–3062.

    Google Scholar 

  • Anderson KE, Bloomer JR, Bonkovsky HL, et al (2005) Recommendations for the diagnosis and treatment of the acute porphyrias. Ann Intern Med 142: 439–450.

    PubMed  Google Scholar 

  • Andresen BS, Dobrowolski SF, O’Reilly L, et al (2001) Medium-chain acyl-CoA dehydrogenase (MCAD) mutations identified by MS/MS-based prospective screening of newborns differ from those observed in patients with clinical symptoms: identification and characterization of a new, prevalent mutation that results in mild MCAD deficiency. Am J Hum Genet 68: 1408–1418. doi:10.1086/320602.

    PubMed  CAS  Google Scholar 

  • Badminton MN, Elder GH (2005) Molecular mechanisms of dominant expression in porphyria. J Inherit Metab Dis 28: 277–286. doi:10.1007/s10545-005-8050-3.

    PubMed  CAS  Google Scholar 

  • Bateson W (1900) Problems of heredity as a subject for horticultural investigations. J R Hort Soc 25: 54–61.

    Google Scholar 

  • Bateson W (1902) Mendel’s Principles of Heredity: A Defence. London: Cambridge University Press.

    Google Scholar 

  • Bateson W (1907) The progress of genetic research. In: Wilks W (ed) Report of the Third 1906 International Conference on Genetics: Hybridization (the cross-breeding of genera or species), the cross-breeding of varieties, and general plant breeding. London: Royal Horticultural Society.

    Google Scholar 

  • Bateson W (1909) Mendel’s Principles of Heredity. London: Cambridge University Press.

    Google Scholar 

  • Bateson W, Saunders ER (1902) The facts of heredity in the light of Mendel’s discovery. Reports to the Evolution Committee of the Royal Society 1: 125–160.

    Google Scholar 

  • Batshaw ML, Msall M, Beaudet AL, Trojak J (1986) Risk of serious illness in heterozygotes for ornithine transcarbamylase deficiency. J Pediatr 108: 236–241. doi:10.1016/S0022-3476(86)80989-1.

    PubMed  CAS  Google Scholar 

  • Baumgartner MR, Dantas MF, Suormala T, et al (2004) Isolated 3-methylcrotonyl-CoA carboxylase deficiency: evidence for an allele-specific dominant negative effect and responsiveness to biotin therapy. Am J Hum Genet 75: 790–800. doi:10.1086/425181.

    PubMed  CAS  Google Scholar 

  • Bertolini S, Cassanelli S, Garuti R, et al (1999) Analysis of LDL receptor gene mutations in Italian patients with homozygous familial hypercholesterolemia. Arterioscler Thromb Vasc Biol 19: 408–418.

    PubMed  CAS  Google Scholar 

  • Bertolini S, Cantafora A, Averna M, et al (2000) Clinical expression of familial hypercholesterolemia in clusters of mutations of the LDL receptor gene that cause a receptor-defective or receptor-negative phenotype. Arterioscler Thromb Vasc Biol 20: E41–E52.

    PubMed  CAS  Google Scholar 

  • Beukeveld GJ, Wolthers BG, Nordmann Y, Deybach JC, Grandchamp B, Wadman SK (1990) A retrospective study of a patient with homozygous form of acute intermittent porphyria. J Inherit Metab Dis 13: 673–683. doi:10.1007/BF01799566.

    PubMed  CAS  Google Scholar 

  • Beutler E, Baluda MC, Sturgeon P, Day R (1965) A new genetic abnormality resulting in galactose-1-phosphate uridyltransferase deficiency. Lancet 285(7381): 353–354. doi:10.1016/S0140-6736(65)91782-4.

    Google Scholar 

  • Bird TD, Hamernyik P, Nutter JY, Labbe RF (1979) Inherited deficiency of delta-aminolevulinic acid dehydratase. Am J Hum Genet 31: 662–668.

    PubMed  CAS  Google Scholar 

  • Byers PH (2001) Disorders of collagen biosynthesis and structure. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds; Childs B, Kinzler KW, Vogelstein B, assoc. eds. The Metabolic and Molecular Bases of Inherited Disease, 8th edn. New York: McGraw-Hill, 5241–5285.

    Google Scholar 

  • Cai X, Cullen BR (2007) The imprinted H19 noncoding RNA is a primary microRNA precursor. RNA 13: 313–316. doi:10.1261/rna.351707.

    PubMed  CAS  Google Scholar 

  • Chun K, MacKay N, Petrova-Benedict R, et al (1995) Mutations in the X-linked E1 alpha subunit of pyruvate dehydrogenase: exon skipping, insertion of duplicate sequence, and missense mutations leading to the deficiency of the pyruvate dehydrogenase complex. Am J Hum Genet 56: 558–569.

    PubMed  CAS  Google Scholar 

  • Classon M, Harlow E (2002) The retinoblastoma tumour suppressor in development and cancer. Nat Rev Cancer 2: 910–917. doi:10.1038/nrc950.

    PubMed  CAS  Google Scholar 

  • Cooper WN, Luharia A, Evans GA, et al (2005) Molecular subtypes and phenotypic expression of Beckwith–Wiedemann syndrome. Eur J Hum Genet 13: 1025–1032. doi:10.1038/sj.ejhg.5201463.

    PubMed  CAS  Google Scholar 

  • Correns C (1900) G. Mendels Regel über das Verhalten der Nachkommenschaft der Rassenbastarde. Berichte der Deutschen Botanischen Gesellschaft 18: 158–168.

    Google Scholar 

  • Corson TW, Gallie BL (2007) One hit, two hits, three hits, more? Genomic changes in the development of retinoblastoma. Genes Chromosomes Cancer 46: 617–634. doi:10.1002/gcc.20457.

    PubMed  CAS  Google Scholar 

  • Coughlin EM, Christensen E, Kunz PL, et al (1998) Molecular analysis and prenatal diagnosis of human fumarase deficiency. Mol Genet Metab 63: 254–262.

    PubMed  CAS  Google Scholar 

  • Dahl HH (1995) Pyruvate dehydrogenase E1 alpha deficiency: males and females differ yet again. Am J Hum Genet 56: 553–557.

    PubMed  CAS  Google Scholar 

  • de Lonlay P, Fournet JC, Rahier J, et al (1997) Somatic deletion of the imprinted 11p15 region in sporadic persistent hyperinsulinemic hypoglycemia of infancy is specific of focal adenomatous hyperplasia and endorses partial pancreatectomy. J Clin Invest 100: 802–807. doi:10.1172/JCI119594.

    PubMed  Google Scholar 

  • de Lonlay-Debeney P, Poggi-Travert F, et al (1999) Clinical features of 52 neonates with hyperinsulinism. N Engl J Med 340: 1169–1175. doi:10.1056/NEJM199904153401505.

    PubMed  Google Scholar 

  • De Vries H (1900) Sur la loi de disjonction des hybrides. C R Academ Sci (Paris) 130: 845–847.

    Google Scholar 

  • Deegan PB, Baehner AF, Barba Romero MA, Hughes DA, Kampmann C, Beck M (2006) Natural history of Fabry disease in females in the Fabry Outcome Survey. J Med Genet 43: 347–352. doi:10.1136/jmg.2005.036327.

    PubMed  CAS  Google Scholar 

  • Deon M, Sitta A, Barschak AG, et al (2008) Oxidative stress is induced in female carriers of X-linked adrenoleukodystrophy. J Neurol Sci 266: 79–83. doi:10.1016/j.jns.2007.08.043.

    PubMed  CAS  Google Scholar 

  • Dobyns WB, Filauro A, Tomson BN, et al (2004) Inheritance of most X-linked traits is not dominant or recessive, just X-linked. Am J Med Genet A 129A: 136–143. doi:10.1002/ajmg.a.30123.

    PubMed  Google Scholar 

  • Egger NG, Lee C, Anderson KE (2006) Disorders of heme biosynthesis. In: Fernandes J, Saudubray JM, van den Berghe G, Walter JH (eds) Inborn Metabolic Diseases. Heidelberg: Springer 451–464.

    Google Scholar 

  • Eisensmith RC, Woo SL (1992) Molecular basis of phenylketonuria and related hyperphenylalaninemias: mutations and polymorphisms in the human phenylalanine hydroxylase gene. Hum Mutat 1: 13–23. doi:10.1002/humu.1380010104.

    PubMed  CAS  Google Scholar 

  • Elsevier JP, Fridovich-Keil JL (1996) The Q188R mutation in human galactose-1-phosphate uridylyltransferase acts as a partial dominant negative. J Biol Chem 271: 32002–32007. doi:10.1074/jbc.271.50.32002.

    PubMed  CAS  Google Scholar 

  • Engel E (2006) A fascination with chromosome rescue in uniparental disomy: Mendelian recessive outlaws and imprinting copyrights infringements. Eur J Hum Genet 14: 1158–1169. doi:10.1038/sj.ejhg.5201619.

    PubMed  CAS  Google Scholar 

  • Gabory A, Ripoche MA, Yoshimizu T, Dandolo L (2006) The H19 gene: regulation and function of a non-coding RNA. Cytogenet Genome Res 113: 188–193. doi:10.1159/000090831.

    PubMed  CAS  Google Scholar 

  • Garrod AE (1899) A contribution to the study of alkaptonuria. Medico-Chirurg Trans 82: 367–394.

    Google Scholar 

  • Garrod AE (1901) About alkaptonuria. Lancet 158(4083): 1484–1486. doi:10.1016/S0140-6736(01)74537-0.

    Google Scholar 

  • Garrod AE (1902) The incidence of alkaptonuria: a study in chemical individuality. Lancet 160(4137): 1616–1620. doi:10.1016/S0140-6736(01)41972-6.

    Google Scholar 

  • Garrod AE (1908) Inborn errors of metabolism. Lancet 172(4427): 1–7, 73–79, 142–148, 214–220. doi:10.1016/S0140-6736(01)78482-6.

    Google Scholar 

  • Gasser-Wolf E (1965) Ist die protoporphyrinämische Lichtdermatose eine klinische und genetische Einheit? Helv Paediatr Acta 20: 598–617.

    PubMed  CAS  Google Scholar 

  • Gellera C, Uziel G, Rimoldi M, et al (1990) Fumarase deficiency is an autosomal recessive encephalopathy affecting both the mitochondrial and the cytosolic enzymes. Neurology 40: 495–499.

    PubMed  CAS  Google Scholar 

  • Giurgea I, Sempoux C, Bellanne-Chantelot C, et al (2006) The Knudson’s two-hit model and timing of somatic mutation may account for the phenotypic diversity of focal congenital hyperinsulinism. J Clin Endocrinol Metab 91: 4118–4123. doi:10.1210/jc.2006-0397.

    PubMed  CAS  Google Scholar 

  • Glaser B, Kesavan P, Heyman M, et al (1998) Familial hyperinsulinism caused by an activating glucokinase mutation. N Engl J Med 338: 226–230. doi:10.1056/NEJM199801223380404.

    PubMed  CAS  Google Scholar 

  • Gloyn AL, Pearson ER, Antcliff JF, et al (2004) Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N Engl J Med 350: 1838–1849. doi:10.1056/NEJMoa032922.

    PubMed  CAS  Google Scholar 

  • Gloyn AL, Siddiqui J, Ellard S (2006) Mutations in the genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) in diabetes mellitus and hyperinsulinism. Hum Mutat 27: 220–231. doi:10.1002/humu.20292.

    PubMed  CAS  Google Scholar 

  • Gottlieb E, Tomlinson IP (2005) Mitochondrial tumour suppressors: a genetic and biochemical update. Nat Rev Cancer 5: 857–866.

    PubMed  CAS  Google Scholar 

  • Gouya L, Puy H, Robreau AM, et al (2002) The penetrance of dominant erythropoietic protoporphyria is modulated by expression of wildtype FECH. Nat Genet 30: 27–28. doi:10.1038/ng809.

    PubMed  CAS  Google Scholar 

  • Gouya L, Martin-Schmitt C, Robreau AM, et al (2006) Contribution of a common single-nucleotide polymorphism to the genetic predisposition for erythropoietic protoporphyria. Am J Hum Genet 78: 2–14. doi:10.1086/498620.

    PubMed  CAS  Google Scholar 

  • Gross U, Sassa S, Jacob K, et al (1998) 5-Aminolevulinic acid dehydratase deficiency porphyria: a twenty-year clinical and biochemical follow-up. Clin Chem 44: 1892–1896.

    PubMed  CAS  Google Scholar 

  • Guldberg P, Henriksen KF, Thony B, Blau N, Guttler F (1994) Molecular heterogeneity of nonphenylketonuria hyperphenylalaninemia in 25 Danish patients. Genomics 21: 453–455. doi:10.1006/geno.1994.1296.

    PubMed  CAS  Google Scholar 

  • Guldberg P, Rey F, Zschocke J, et al (1998) A European multicenter study of phenylalanine hydroxylase deficiency: classification of 105 mutations and a general system for genotype-based prediction of metabolic phenotype. Am J Hum Genet 63: 71–79. doi:10.1086/301920.

    PubMed  CAS  Google Scholar 

  • Güttler F (1980) Hyperphenylalaninemia: diagnosis and classification of the various types of phenylalanine hydroxylase deficiency in childhood. Acta Paediatr Scand Suppl 280: 1–80.

    PubMed  Google Scholar 

  • Holme SA, Worwood M, Anstey AV, Elder GH, Badminton MN (2007) Erythropoiesis and iron metabolism in dominant erythropoietic protoporphyria. Blood 110: 4108–4110. doi:10.1182/blood-2007-04-088120.

    PubMed  CAS  Google Scholar 

  • Horvath GA, Stockler-Ipsiroglu SG, Salvarinova-Zivkovic R, et al (2008) Autosomal recessive GTP cyclohydrolase I deficiency without hyperphenylalaninemia: evidence of a phenotypic continuum between dominant and recessive forms. Mol Genet Metab 94: 127–131. doi:10.1016/j.ymgme.2008.01.003.

    PubMed  CAS  Google Scholar 

  • Howlett NG, Taniguchi T, Olson S, et al (2002) Biallelic inactivation of BRCA2 in Fanconi anemia. Science 297: 606–609. doi:10.1126/science.1073834.

    PubMed  CAS  Google Scholar 

  • Huopio H, Reimann F, Ashfield R, et al (2000) Dominantly inherited hyperinsulinism caused by a mutation in the sulfonylurea receptor type 1. J Clin Invest 106: 897–906. doi:10.1172/JCI9804.

    PubMed  CAS  Google Scholar 

  • Hussain K, Flanagan SE, Smith VV, et al (2008) An ABCC8 gene mutation and mosaic uniparental isodisomy resulting in atypical diffuse congenital hyperinsulinism. Diabetes 57: 259–263. doi:10.2337/db07-0998.

    PubMed  CAS  Google Scholar 

  • Hwu WL, Wang PJ, Hsiao KJ, Wang TR, Chiou YW, Lee YM (1999) Dopa-responsive dystonia induced by a recessive GTP cyclohydrolase I mutation. Hum Genet 105: 226–230. doi:10.1007/s004390051093.

    PubMed  CAS  Google Scholar 

  • Hwu WL, Chiou YW, Lai SY, Lee YM (2000) Dopa-responsive dystonia is induced by a dominant-negative mechanism. Ann Neurol 48: 609–613. doi:10.1002/1531-8249(200010)48:4<609::AID-ANA7>3.0.CO;2-H.

    PubMed  CAS  Google Scholar 

  • Ichinose H, Ohye T, Takahashi E, et al (1994) Hereditary progressive dystonia with marked diurnal fluctuation caused by mutations in the GTP cyclohydrolase I gene. Nat Genet 8: 236–242. doi:10.1038/ng1194-236.

    PubMed  CAS  Google Scholar 

  • Jansen AC, van Wissen S, Defesche JC, Kastelein JJ (2002) Phenotypic variability in familial hypercholesterolaemia: an update. Curr Opin Lipidol 13: 165–171. doi:10.1097/00041433-200204000-00008.

    PubMed  CAS  Google Scholar 

  • Jansen AC, van Aalst-Cohen ES, Tanck MW, et al (2005) Genetic determinants of cardiovascular disease risk in familial hypercholesterolemia. Arterioscler Thromb Vasc Biol 25: 1475–1481. doi:10.1161/01.ATV.0000168909.44877.a7.

    PubMed  CAS  Google Scholar 

  • Kacser H, Burns JA (1981) The molecular basis of dominance. Genetics 97: 639–666.

    PubMed  CAS  Google Scholar 

  • Kacser H, Bulfield G, Wallace ME (1973) Histidinaemic mutant in the mouse. Nature 244: 77–79. doi:10.1038/244077a0.

    PubMed  CAS  Google Scholar 

  • Klepper J, Leiendecker B (2007) GLUT1 deficiency syndrome—2007 update. Dev Med Child Neurol 49: 707–716.

    Article  PubMed  Google Scholar 

  • Knox WE, Messinger EC (1958) The detection in the heterozygote of the metabolic effect of the recessive gene for phenylketonuria. Am J Hum Genet 10: 53–60.

    PubMed  CAS  Google Scholar 

  • Knudson AG Jr. (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A 68: 820–823. doi:10.1073/pnas.68.4 820 10.1073/pnas.68.4.820.

    PubMed  Google Scholar 

  • Knudson AG (2001) Two genetic hits (more or less) to cancer. Nat Rev Cancer 1: 157–162. doi:10.1038/35101031.

    PubMed  CAS  Google Scholar 

  • Kozak L, Francova H, Pijackova A, et al (1999) Presence of a deletion in the 5′ upstream region of the GALT gene in Duarte (D2) alleles. J Med Genet 36: 576–578.

    PubMed  CAS  Google Scholar 

  • Krawczak M, Zschocke J (2003) A role for overdominant selection in phenylketonuria? Evidence from molecular data. Hum Mutat 21: 394–397. doi:10.1002/humu.10205.

    PubMed  CAS  Google Scholar 

  • Lin YW, MacMullen C, Ganguly A, Stanley CA, Shyng SL (2006) A novel KCNJ11 mutation associated with congenital hyperinsulinism reduces the intrinsic open probability of beta-cell ATP-sensitive potassium channels. J Biol Chem 281: 3006–3012. doi:10.1074/jbc.M511875200.

    PubMed  CAS  Google Scholar 

  • Lyon MF (1962) Sex chromatin and gene action in the mammalian X-chromosome. Am J Hum Genet 14: 135–148.

    PubMed  CAS  Google Scholar 

  • Maestri NE, Lord C, Glynn M, Bale A, Brusilow SW (1998) The phenotype of ostensibly healthy women who are carriers for ornithine transcarbamylase deficiency. Medicine (Baltimore) 77: 389–397. doi:10.1097/00005792-199811000-00005.

    CAS  Google Scholar 

  • Magge SN, Shyng SL, MacMullen C, et al (2004) Familial leucine-sensitive hypoglycemia of infancy due to a dominant mutation of the beta-cell sulfonylurea receptor. J Clin Endocrinol Metab 89: 4450–4456. doi:10.1210/jc.2004-0441.

    PubMed  CAS  Google Scholar 

  • Maier EM, Kammerer S, Muntau AC, Wichers M, Braun A, Roscher AA (2002) Symptoms in carriers of adrenoleukodystrophy relate to skewed X inactivation. Ann Neurol 52: 683–688. doi:10.1002/ana.10376.

    PubMed  CAS  Google Scholar 

  • Marabotti A, Facchiano AM (2005) Homology modeling studies on human galactose-1-phosphate uridylyltransferase and on its galactosemia-related mutant Q188R provide an explanation of molecular effects of the mutation on homo- and heterodimers. J Med Chem 48: 773–779. doi:10.1021/jm049731q.

    PubMed  CAS  Google Scholar 

  • Meissner P, Adams P, Kirsch R (1993) Allosteric inhibition of human lymphoblast and purified porphobilinogen deaminase by protoporphyrinogen and coproporphyrinogen. A possible mechanism for the acute attack of variegate porphyria. J Clin Invest 91: 1436–1444. doi:10.1172/JCI116348.

    PubMed  CAS  Google Scholar 

  • Mendel G (1866) Versuche über Pflanzenhybriden. Verhandlungen des naturforschenden Vereines in Brünn 4: 3–47.

    Google Scholar 

  • Morgan TH (1910) Sex-limited inheritance in Drosophila. Science 32: 120–122. doi:10.1126/science.32.812.120.

    PubMed  Google Scholar 

  • Morgan TH, Sturtevant AH, Muller HJ, Bridges CB (1915) The Mechanism of Mendelian Heredity. New York: Henry Holt & Co.

    Google Scholar 

  • Nakano H, Nakano A, Toyomaki Y, et al (2006) Novel ferrochelatase mutations in Japanese patients with erythropoietic protoporphyria: high frequency of the splice site modulator IVS3–48C polymorphism in the Japanese population. J Invest Dermatol 126: 2717–2719. doi:10.1038/sj.jid.5700456.

    PubMed  CAS  Google Scholar 

  • Narain Y, Wyttenbach A, Rankin J, Furlong RA, Rubinsztein DC (1999) A molecular investigation of true dominance in Huntington’s disease. J Med Genet 36: 739–746.

    PubMed  CAS  Google Scholar 

  • Nardocci N, Zorzi G, Blau N, et al (2003) Neonatal dopa-responsive extrapyramidal syndrome in twins with recessive GTPCH deficiency. Neurology 60: 335–337.

    PubMed  CAS  Google Scholar 

  • Nichols CG (2006) KATP channels as molecular sensors of cellular metabolism. Nature 440: 470–476. doi:10.1038/nature04711.

    PubMed  CAS  Google Scholar 

  • Otonkoski T, Jiao H, Kaminen-Ahola N, et al (2007) Physical exercise-induced hypoglycemia caused by failed silencing of monocarboxylate transporter 1 in pancreatic beta cells. Am J Hum Genet 81: 467–474. doi:10.1086/520960.

    PubMed  CAS  Google Scholar 

  • Parkhurst SM, Meneely PM (1994) Sex determination and dosage compensation: lessons from flies and worms. Science 264: 924–932. doi:10.1126/science.8178152.

    PubMed  CAS  Google Scholar 

  • Patenaude SI, Seto NO, Borisova SN, et al (2002) The structural basis for specificity in human ABO(H) blood group biosynthesis. Nat Struct Biol 9: 685–690. doi:10.1038/nsb832.

    PubMed  CAS  Google Scholar 

  • Pier GB, Grout M, Zaidi T, et al (1998) Salmonella typhi uses CFTR to enter intestinal epithelial cells. Nature 393: 79–82. doi:10.1038/30006.

    PubMed  CAS  Google Scholar 

  • Pinney SE, Macmullen C, Becker S, et al (2008) Clinical characteristics and biochemical mechanisms of congenital hyperinsulinism associated with dominant K(ATP)channel mutations. J Clin Invest.

  • Puy H, Deybach JC, Lamoril J, et al (1997) Molecular epidemiology and diagnosis of PBG deaminase gene defects in acute intermittent porphyria. Am J Hum Genet 60: 1373–1383. doi:10.1086/515455.

    PubMed  CAS  Google Scholar 

  • Read A, Donnai D (2007) New Clinical Genetics. Bloxham: Scion.

    Google Scholar 

  • Reed WB, Wuepper KD, Epstein JH, Redeker A, Simonson RJ, McKusick VA (1970) Erythropoietic protoporphyria. A clinical and genetic study. JAMA 214: 1060–1066. doi:10.1001/jama.214.6.1060.

    PubMed  CAS  Google Scholar 

  • Rinat C, Zoref-Shani E, Ben-Neriah Z, et al (2006) Molecular, biochemical, and genetic characterization of a female patient with Lesch–Nyhan disease. Mol Genet Metab 87: 249–252. doi:10.1016/j.ymgme.2005.09.025.

    PubMed  CAS  Google Scholar 

  • Rodriguez S, Gaunt TR, Day IN (2007) Molecular genetics of human growth hormone, insulin-like growth factors and their pathways in common disease. Hum Genet 122: 1–21. doi:10.1007/s00439-007-0378-3.

    PubMed  CAS  Google Scholar 

  • Sarkany RP, Alexander GJ, Cox TM (1994) Recessive inheritance of erythropoietic protoporphyria with liver failure. Lancet 343: 1394–1396. doi:10.1016/S0140-6736(94)92525-9.

    PubMed  CAS  Google Scholar 

  • Scriver CR, Waters PJ (1999) Monogenic traits are not simple: lessons from phenylketonuria. Trends Genet 15: 267–272. doi:10.1016/S0168-9525(99)01761-8.

    PubMed  CAS  Google Scholar 

  • Segawa M, Nomura Y, Nishiyama N (2003) Autosomal dominant guanosine triphosphate cyclohydrolase I deficiency (Segawa disease). Ann Neurol 54(Suppl 6): S32–S45. doi:10.1002/ana.10630.

    PubMed  CAS  Google Scholar 

  • Siemens HW (1925) Über einen in der menschlichen Pathologie noch nicht beobachteten Vererbungsmodus: Dominant-geschlechtsgebundene Vererbung. Arch Rass Gesell Biol 17: 47–61.

    Google Scholar 

  • Simonaro CM, Park JH, Eliyahu E, Shtraizent N, McGovern MM, Schuchman EH (2006) Imprinting at the SMPD1 locus: implications for acid sphingomyelinase-deficient Niemann–Pick disease. Am J Hum Genet 78: 865–870. doi:10.1086/503750.

    PubMed  CAS  Google Scholar 

  • Solis C, Martinez-Bermejo A, Naidich TP, et al (2004) Acute intermittent porphyria: studies of the severe homozygous dominant disease provides insights into the neurologic attacks in acute porphyrias. Arch Neurol 61: 1764–1770. doi:10.1001/archneur.61.11.1764.

    PubMed  Google Scholar 

  • Stanley CA, Lieu YK, Hsu BY, et al (1998) Hyperinsulinism and hyperammonemia in infants with regulatory mutations of the glutamate dehydrogenase gene. N Engl J Med 338: 1352–1357. doi:10.1056/NEJM199805073381904.

    PubMed  CAS  Google Scholar 

  • Stokvis BJ (1889) Over twee zeldzame kleurstoffen in urine van zieken. Nederl Tijdschr Geneeskd 2: 409–417.

    Google Scholar 

  • Strand LJ, Meyer UA, Felsher BF, Redeker AG, Marver HS (1972) Decreased red cell uroporphyrinogen I synthetase activity in intermittent acute porphyria. J Clin Invest 51: 2530–2536. doi:10.1172/JCI107068.

    PubMed  CAS  Google Scholar 

  • Sutton WS (1903) The chromosomes in heredity. Biol Bull 4: 231–251. doi:10.2307/1535741.

    Google Scholar 

  • Thony B, Blau N (2006) Mutations in the BH4-metabolizing genes GTP cyclohydrolase I, 6-pyruvoyl-tetrahydropterin synthase, sepiapterin reductase, carbinolamine-4a-dehydratase, and dihydropteridine reductase. Hum Mutat 27: 870–878. doi:10.1002/humu.20366.

    PubMed  CAS  Google Scholar 

  • Thornton PS, MacMullen C, Ganguly AR, et al (2003) Clinical and molecular characterization of a dominant form of congenital hyperinsulinism caused by a mutation in the high-affinity sulfonylurea receptor. Diabetes 52: 2403–2410. doi:10.2337/diabetes.52.9.2403.

    PubMed  CAS  Google Scholar 

  • Tomlinson IP, Alam NA, Rowan AJ, et al (2002) Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet 30: 406–410.

    PubMed  CAS  Google Scholar 

  • Trbušek M, Francová H, Kozák L (2001) Galactosemia: deletion in the 5′ upstream region of the GALT gene reduces promoter efficiency. Hum Genet 109: 117–120. doi:10.1007/s004390100540.

    PubMed  Google Scholar 

  • Tyfield L, Reichardt J, Fridovich-Keil J, et al (1999) Classical galactosemia and mutations at the galactose-1-phosphate uridyl transferase (GALT) gene. Hum Mutat 13: 417–430. doi:10.1002/(SICI)1098-1004(1999)13:6<417:AID-HUMU1>3.0.CO;2-0.

    PubMed  CAS  Google Scholar 

  • Valayannopoulos V, Vaxillaire M, Aigrain Y, et al (2007) Coexistence in the same family of both focal and diffuse forms of hyperinsulinism. Diabetes Care 30: 1590–1592. doi:10.2337/dc06-2327.

    PubMed  Google Scholar 

  • Verkarre V, Fournet JC, de Lonlay P, et al (1998) Paternal mutation of the sulfonylurea receptor (SUR1) gene and maternal loss of 11p15 imprinted genes lead to persistent hyperinsulinism in focal adenomatous hyperplasia. J Clin Invest 102: 1286–1291. doi:10.1172/JCI4495.

    PubMed  CAS  Google Scholar 

  • Vockley J (2008) Metabolism as a complex genetic trait, a systems biology approach: implications for inborn errors of metabolism and clinical diseases. J Inherit Metab Dis 31.

  • von Tschermak-Seysenegg E (1900) Über künstliche Kreuzung bei Pisum sativum. Zeitschrift für das landwirtschaftliche Versuchswesen in Österreich 3: 465–555.

    Google Scholar 

  • Went LN, Klasen EC (1984) Genetic aspects of erythropoietic protoporphyria. Ann Hum Genet 48: 105–117. doi:10.1111/j.1469-1809.1984.tb01006.x.

    PubMed  CAS  Google Scholar 

  • Wilcox WR, Oliveira JP, Hopkin RJ, et al (2008) Females with Fabry disease frequently have major organ involvement: lessons from the Fabry Registry. Mol Genet Metab 93: 112–128. doi:10.1016/j.ymgme.2007.09.013.

    PubMed  CAS  Google Scholar 

  • Wilson EB (1911) The sex chromosomes. Mikrosk Anat Entwicklungsmech 77: 249–271.

    Google Scholar 

  • Wiuf C (2001) Do delta F508 heterozygotes have a selective advantage? Genet Res 78: 41–47. doi:10.1017/S0016672301005195.

    PubMed  CAS  Google Scholar 

  • Yamamoto F, Clausen H, White T, Marken J, Hakomori S (1990a) Molecular genetic basis of the histo-blood group ABO system. Nature 345: 229–233. doi:10.1038/345229a0.

    CAS  Google Scholar 

  • Yamamoto F, Marken J, Tsuji T, White T, Clausen H, Hakomori S (1990b) Cloning and characterization of DNA complementary to human UDP-GalNAc: Fuc alpha 1→2Gal alpha 1→3GalNAc transferase (histo-blood group A transferase) mRNA. J Biol Chem 265: 1146–1151.

    CAS  Google Scholar 

  • Zschocke J, Graham CA, Stewart FJ, Carson DJ, Nevin NC (1994) Non-phenylketonuria hyperphenylalaninaemia in Northern Ireland: frequent mutation allows screening and early diagnosis. Hum Mutat 4: 114–118. doi:10.1002/humu.1380040204.

    PubMed  CAS  Google Scholar 

  • Zschocke J, Kohlmueller D, Quak E, Meissner T, Hoffmann GF, Mayatepek E (1999) Mild trimethylaminuria caused by common variants in FMO3 gene. Lancet 354: 834–835.

    PubMed  CAS  Google Scholar 

  • Zschocke J, Schulze A, Lindner M, et al (2001) Molecular and functional characterisation of mild MCAD deficiency. Hum Genet 108: 404–408. doi:10.1007/s004390100501.

    PubMed  CAS  Google Scholar 

  • Zschocke J, Schaefer JR (2003) Homozygous familial hypercholesterolaemia in identical twins. Lancet 361: 1641. doi:10.1016/S0140-6736(03)13303-X.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Zschocke.

Additional information

Communicating editor: Verena Peters

Competing interests: None declared

References to electronic databases: OMIM database of individual disorders: <http://www.ncbi.nlm.nih.gov/sites/entrez> SNP database of genetic variants: <http://www.ncbi.nlm.nih.gov/sites/entrez?db=snp>

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zschocke, J. Dominant versus recessive: Molecular mechanisms in metabolic disease. J Inherit Metab Dis 31, 599–618 (2008). https://doi.org/10.1007/s10545-008-1016-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-008-1016-5

Navigation