Skip to main content
Log in

Enzyme, cell and gene-based therapies for metachromatic leukodystrophy

  • ICIEM 2006
  • Published:
Journal of Inherited Metabolic Disease

Summary

Metachromatic leukodystrophy (MLD) is a demyelinating storage disease caused by deficiency of the lysosomal enzyme arylsulfatase A (ARSA). Lack of ARSA activity leads to the accumulation of galactosylceramide-3-O-sulfate (sulfatide) in the central and peripheral nervous systems. Based on the age at onset, the disease is usually classified into three forms: the late-infantile form, which manifests in the second year of life; the juvenile variants (onset between 4 and 12 years), which are subdivided into early-juvenile (EJ, onset before 6 years) and late-juvenile (LJ, onset after 6 years); and the adult form (onset after 12 years of age). Currently, there is no efficient therapy for the late-infantile form of MLD (50% of the patients), death occurring within a few years after onset of neurological symptoms. Allogeneic haematopoietic cell transplantation (HCT), when performed at a very early stage of the disease, may improve selected patients with juvenile or adult forms of MLD. As with other lysosomal storage diseases, the physiopathology of MLD is poorly understood. Demyelination is the main pathological finding, but substantial storage of sulfatides in neurons also occurs, and may contribute to the clinical phenotype. The physiopathological process leading to neuronal and glial cell degeneration and apoptosis involves accumulation of undegraded sulfatides but also secondary abnormalities (storage/mislocalization of unrelated lipids, inflammatory processes). This review summarizes the recent advances in the understanding of the physiopathology of MLD and the new therapeutic perspectives currently under preclinical investigation, including enzyme replacement therapy, gene therapy and cell therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AAV:

adeno-associated virus

ARSA:

arylsulfatase A

CNS:

central nervous system

EJ:

early juvenile

ERT:

enzyme replacement therapy

ES:

embryonic stem

FGE:

Cα-formylglycine generating enzyme

GalCer:

galactosylceramide

GFP:

green fluorescent protein

HCT:

haematopoietic cell transplantation

HSC:

haematopoietic stem cell

LI:

late infantile

LJ:

late juvenile

LSD:

lysosomal storage disease

MAL:

myelin and lymphocyte protein

MLD:

metachromatic leukodystrophy

MSC:

mesenchymal stem cell

OLP:

oligodendroglial progenitor

PNS:

peripheral nervous system

Sulf:

sulfatide

References

  • Asheuer M, Pflumio F, Benhamida S, et al (2004) Human CD34+ cells differentiate into microglia and express recombinant therapeutic protein. Proc Natl Acad Sci USA 101: 3557–3562.

    Article  PubMed  CAS  Google Scholar 

  • Bae JS, Furuya S, Shinoda Y, et al (2005) Neurodegeneration augments the ability of bone marrow-derived mesenchymal stem cells to fuse with Purkinje neurons in Niemann-Pick type C mice. Hum Gene Ther 16: 1006–1011.

    Article  PubMed  CAS  Google Scholar 

  • Baudry M, Yao Y, Simmons D, Liu J, Bi X (2003) Postnatal development of inflammation in a murine model of Niemann-Pick type C disease: immunohistochemical observations of microglia and astroglia. Exp Neurol 184: 887–903.

    Article  PubMed  CAS  Google Scholar 

  • Bible E, Gupta P, Hofmann SL, Cooper JD (2004) Regional and cellular neuropathology in the palmitoyl protein thioesterase-1 null mutant mouse model of infantile neuronal ceroid lipofuscinosis. Neurobiol Dis 16: 346–359.

    Article  PubMed  CAS  Google Scholar 

  • Biffi A, De Palma M, Quattrini A, et al (2004) Correction of metachromatic leukodystrophy in the mouse model by transplantation of genetically modified hematopoietic stem cells. J Clin Invest 113: 1118–1129.

    Article  PubMed  CAS  Google Scholar 

  • Biffi A, Capotondo A, Fasano S, et al (2006) Gene therapy of metachromatic leukodystrophy reverses neurological damage and deficits in mice. J Clin Invest 116: 3070–3082.

    Article  PubMed  CAS  Google Scholar 

  • Boot RG, Verhoek M, de Fost M, et al (2004) Marked elevation of the chemokine CCL18/PARC in Gaucher disease: a novel surrogate marker for assessing therapeutic intervention. Blood 103: 33–39.

    Article  PubMed  CAS  Google Scholar 

  • Brinkman J, Wijburg FA, Hollak CE, et al (2005) Plasma chitotriosidase and CCL18: early biochemical surrogate markers in type B Niemann-Pick disease. J Inherit Metab Dis 28: 13–20.

    Article  PubMed  CAS  Google Scholar 

  • Buccoliero R, Bodennec J, Futerman AH (2002) The role of sphingolipids in neuronal development: lessons from models of sphingolipid storage diseases. Neurochem Res 27: 565–574.

    Article  PubMed  CAS  Google Scholar 

  • Cheng SH, Smith AE (2003) Gene therapy progress and prospects: gene therapy of lysosomal storage disorders. Gene Ther 10: 1275–1281.

    Article  PubMed  CAS  Google Scholar 

  • Ciron C, Desmaris N, Colle MA, et al (2006) Gene therapy of the brain in the dog model of Hurler's syndrome. Ann Neurol 60: 204–213.

    Article  PubMed  CAS  Google Scholar 

  • Coetzee T, Suzuki K, Popko B (1998) New perspectives on the function of myelin galactolipids. Trends Neurosci 21: 126–130.

    Article  PubMed  CAS  Google Scholar 

  • Consiglio A, Quattrini A, Martino S, et al (2001) In vivo gene therapy of metachromatic leukodystrophy by lentiviral vectors: correction of neuropathology and protection against learning impairments in affected mice. Nat Med 7: 310–316.

    Article  PubMed  CAS  Google Scholar 

  • Constantin G, Laudanna C, Baron P, Berton G (1994) Sulfatides trigger cytokine gene expression and secretion in human monocytes. FEBS Lett 350: 66–70.

    Article  PubMed  CAS  Google Scholar 

  • Cosma MP, Pepe S, Annunziata I, et al (2003) The multiple sulfatase deficiency gene encodes an essential and limiting factor for the activity of sulfatases. Cell 113: 445–456.

    Article  PubMed  CAS  Google Scholar 

  • Cressant A, Desmaris N, Verot L, et al (2004) Improved behavior and neuropathology in the mouse model of Sanfilippo type IIIB disease after adeno-associated virus-mediated gene transfer in the striatum. J Neurosci 24: 10229–10239.

    Article  PubMed  CAS  Google Scholar 

  • d'Azzo A, Tessitore A, Sano R (2006) Gangliosides as apoptotic signals in ER stress response. Cell Death Differ 13: 404–414.

    Article  PubMed  CAS  Google Scholar 

  • D'Hooge R, Coenen R, Gieselmann V, Lullmann-Rauch R, De Deyn PP (1999a) Decline in brainstem auditory-evoked potentials coincides with loss of spiral ganglion cells in arylsulfatase A-deficient mice. Brain Res 847: 352–356.

    Article  Google Scholar 

  • D'Hooge R, Hartmann D, Manil J, Colin F, Gieselmann V, De Deyn PP (1999b) Neuromotor alterations and cerebellar deficits in aged arylsulfatase A-deficient transgenic mice. Neurosci Lett 273: 93–96.

    Article  Google Scholar 

  • D'Hooge R, Van Dam D, Franck F, Gieselmann V, De Deyn PP (2001) Hyperactivity, neuromotor defects, and impaired learning and memory in a mouse model for metachromatic leukodystrophy. Brain Res 907: 35–43.

    Article  PubMed  Google Scholar 

  • Davidson BL, Breakefield XO (2003) Viral vectors for gene delivery to the nervous system. Nat Rev Neurosci 4: 353–364.

    Article  PubMed  CAS  Google Scholar 

  • Desmaris N, Verot L, Puech JP, Caillaud C, Vanier MT, Heard JM (2004) Prevention of neuropathology in the mouse model of Hurler syndrome. Ann Neurol 56: 68–76.

    Article  PubMed  CAS  Google Scholar 

  • Desnick RJ, Schuchman EH (2002) Enzyme replacement and enhancement therapies: lessons from lysosomal disorders. Nat Rev Genet 3: 954–966.

    Article  PubMed  CAS  Google Scholar 

  • Dierks T, Schmidt B, Borissenko LV, et al (2003) Multiple sulfatase deficiency is caused by mutations in the gene encoding the human C(alpha)-formylglycine generating enzyme. Cell 113: 435–444.

    Article  PubMed  CAS  Google Scholar 

  • Dierks T, Dickmanns A, Preusser-Kunze A, et al (2005) Molecular basis for multiple sulfatase deficiency and mechanism for formylglycine generation of the human formylglycine-generating enzyme. Cell 121: 541–552.

    Article  PubMed  CAS  Google Scholar 

  • Dunder U, Kaartinen V, Valtonen P, et al (2000) Enzyme replacement therapy in a mouse model of aspartylglycosaminuria. FASEB J 14: 361–367.

    PubMed  CAS  Google Scholar 

  • Faulkner J, Keirstead HS (2005) Human embryonic stem cell-derived oligodendrocyte progenitors for the treatment of spinal cord injury. Transpl Immunol 15: 131–142.

    Article  PubMed  CAS  Google Scholar 

  • Futerman AH, van Meer G (2004) The cell biology of lysosomal storage disorders. Nat Rev Mol Cell Biol 5: 554–565.

    Article  PubMed  CAS  Google Scholar 

  • Gieselmann V, Matzner U, Hess B, et al (1998) Metachromatic leukodystrophy: molecular genetics and an animal model. J Inherit Metab Dis 21: 564–574.

    Article  PubMed  CAS  Google Scholar 

  • Gieselmann V, Franken S, Klein D, et al (2003) Metachromatic leukodystrophy: consequences of sulphatide accumulation. Acta Paediatr Suppl 92: 74–79; discussion 45.

    Article  PubMed  CAS  Google Scholar 

  • Ginzburg L, Futerman AH (2005) Defective calcium homeostasis in the cerebellum in a mouse model of Niemann-Pick A disease. J Neurochem 95: 1619–1628.

    Article  PubMed  CAS  Google Scholar 

  • Ginzburg L, Kacher Y, Futerman AH (2004) The pathogenesis of glycosphingolipid storage disorders. Semin Cell Dev Biol 15: 417–431.

    Article  PubMed  CAS  Google Scholar 

  • Givogri MI, Galbiati F, Fasano S, et al (2006) Oligodendroglial progenitor cell therapy limits central neurological deficits in mice with metachromatic leukodystrophy. J Neurosci 26: 3109–3119.

    Article  PubMed  CAS  Google Scholar 

  • Hess B, Saftig P, Hartmann D, et al (1996) Phenotype of arylsulfatase A-deficient mice: relationship to human metachromatic leukodystrophy. Proc Natl Acad Sci USA 93: 14821–14826.

    Article  PubMed  CAS  Google Scholar 

  • Jeyakumar M, Dwek RA, Butters TD, Platt FM (2005) Storage solutions: treating lysosomal disorders of the brain. Nat Rev Neurosci 6: 713–725.

    PubMed  Google Scholar 

  • Jin HK, Schuchman EH (2003) Ex vivo gene therapy using bone marrow-derived cells: combined effects of intracerebral and intravenous transplantation in a mouse model of Niemann-Pick disease. Mol Ther 8: 876–885.

    Article  PubMed  CAS  Google Scholar 

  • Jurevics H, Hostettler J, Muse ED, et al (2001) Cerebroside synthesis as a measure of the rate of remyelination following cuprizone-induced demyelination in brain. J Neurochem 77: 1067–1076.

    Article  PubMed  CAS  Google Scholar 

  • Kawabata K, Migita M, Mochizuki H, et al (2006) Ex vivo cell-mediated gene therapy for metachromatic leukodystrophy using neurospheres. Brain Res 1 094: 13–23.

    Article  CAS  Google Scholar 

  • Kay GW, Palmer DN, Rezaie P, Cooper JD (2006) Activation of non-neuronal cells within the prenatal developing brain of sheep with neuronal ceroid lipofuscinosis. Brain Pathol 16: 110–116.

    Article  PubMed  Google Scholar 

  • Kim TS, Kim IO, Kim WS, et al (1997) MR of childhood metachromatic leukodystrophy. AJNR Am J Neuroradiol 18: 733–738.

    PubMed  CAS  Google Scholar 

  • Klein D, Schmandt T, Muth-Kohne E, et al (2006) Embryonic stem cell-based reduction of central nervous system sulfatide storage in an animal model of metachromatic leukodystrophy. Gene Ther 13(24):1686–1695.

    Article  PubMed  CAS  Google Scholar 

  • Koc ON, Day J, Nieder M, Gerson SL, Lazarus HM, Krivit W (2002) Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH). Bone Marrow Transplant 30: 215–222.

    Article  PubMed  CAS  Google Scholar 

  • Kondo Y, Wenger DA, Gallo V, Duncan ID (2005) Galactocerebrosidase -deficient oligodendrocytes maintain stable central myelin by exogenous replacement of the missing enzyme in mice. Proc Natl Acad Sci USA 102: 18670–18675.

    Article  PubMed  CAS  Google Scholar 

  • Kreysing J, von Figura K, Gieselmann V (1990) Structure of the arylsulfatase A gene. Eur J Biochem 191: 627–631.

    Article  PubMed  CAS  Google Scholar 

  • Krivit W, Peters C, Shapiro EG (1999) Bone marrow transplantation as effective treatment of central nervous system disease in globoid cell leukodystrophy, metachromatic leukodystrophy, adrenoleukodystrophy, mannosidosis, fucosidosis, aspartylglucosaminuria, Hurler, Maroteaux-Lamy, and Sly syndromes, and Gaucher disease type III. Curr Opin Neurol 12: 167–176.

    Article  PubMed  CAS  Google Scholar 

  • Kurai T, Hisayasu S, Kitagawa R, et al (2007) AAV1 Mediated co-expression of formylglycine-generating enzyme and arylsulfatase a efficiently corrects sulfatide storage in a mouse model of metachromatic leukodystrophy. Mol Ther 15: 38–43.

    Article  PubMed  CAS  Google Scholar 

  • Laudanna C, Constantin G, Baron P, et al (1994) Sulfatides trigger increase of cytosolic free calcium and enhanced expression of tumor necrosis factor-alpha and interleukin-8 mRNA in human neutrophils. Evidence for a role of L-selectin as a signaling molecule. J Biol Chem 269: 4021–4026.

    PubMed  CAS  Google Scholar 

  • Lee WC, Courtenay A, Troendle FJ, et al (2005) Enzyme replacement therapy results in substantial improvements in early clinical phenotype in a mouse model of globoid cell leukodystrophy. FASEB J 19: 1549–1551.

    Article  PubMed  CAS  Google Scholar 

  • Luca T, Givogri MI, Perani L, et al (2005) Axons mediate the distribution of arylsulfatase A within the mouse hippocampus upon gene delivery. Mol Ther 12: 669–679.

    Article  PubMed  CAS  Google Scholar 

  • Lutjohann D, Harzer K, Gieselmann V, Eckhardt M (2006) Reduced brain cholesterol content in arylsulfatase A-deficient mice. Biochem Biophys Res Commun 344: 647–650.

    Article  PubMed  CAS  Google Scholar 

  • Malatack JJ, Consolini DM, Bayever E (2003) The status of hematopoietic stem cell transplantation in lysosomal storage disease. Pediatr Neurol 29: 391–403.

    Article  PubMed  Google Scholar 

  • Mandel RJ, Manfredsson FP, Foust KD, et al (2006) Recombinant adeno-associated viral vectors as therapeutic agents to treat neurological disorders. Mol Ther 13: 463–483.

    Article  PubMed  CAS  Google Scholar 

  • Marcus J, Honigbaum S, Shroff S, Honke K, Rosenbluth J, Dupree JL (2006) Sulfatide is essential for the maintenance of CNS myelin and axon structure. Glia 53: 372–381.

    Article  PubMed  CAS  Google Scholar 

  • Martino G, Pluchino S (2006) The therapeutic potential of neural stem cells. Nat Rev Neurosci 7: 395–406.

    Article  PubMed  CAS  Google Scholar 

  • Matzner U, Harzer K, Learish RD, Barranger JA, Gieselmann V (2000) Long-term expression and transfer of arylsulfatase A into brain of arylsulfatase A-deficient mice transplanted with bone marrow expressing the arylsulfatase A cDNA from a retroviral vector. Gene Ther 7: 1250–1257.

    Article  PubMed  CAS  Google Scholar 

  • Matzner U, Hartmann D, Lullmann-Rauch R, et al (2002) Bone marrow stem cell-based gene transfer in a mouse model for metachromatic leukodystrophy: effects on visceral and nervous system disease manifestations. Gene Ther 9: 53–63.

    Article  PubMed  CAS  Google Scholar 

  • Matzner U, Herbst E, Hedayati KK, et al (2005) Enzyme replacement improves nervous system pathology and function in a mouse model for metachromatic leukodystrophy. Hum Mol Genet 14(9): 1139–1152.

    Article  PubMed  CAS  Google Scholar 

  • Molander-Melin M, Pernber Z, Franken S, Gieselmann V, Mansson JE, Fredman P (2004) Accumulation of sulfatide in neuronal and glial cells of arylsulfatase A deficient mice. J Neurocytol 33: 417–427.

    PubMed  CAS  Google Scholar 

  • Muller FJ, Snyder EY, Loring JF (2006) Gene therapy: can neural stem cells deliver? Nat Rev Neurosci 7: 75–84.

    Article  PubMed  CAS  Google Scholar 

  • Muse ED, Jurevics H, Toews AD, Matsushima GK, Morell P (2001) Parameters related to lipid metabolism as markers of myelination in mouse brain. J Neurochem 76: 77–86.

    Article  PubMed  CAS  Google Scholar 

  • Ohler B, Revenko I, Husted C (2001) Atomic force microscopy of nonhydroxy galactocerebroside nanotubes and their self-assembly at the air-water interface, with applications to myelin. J Struct Biol 133: 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Ohmi K, Greenberg DS, Rajavel KS, Ryazantsev S, Li HH, Neufeld EF (2003) Activated microglia in cortex of mouse models of mucopolysaccharidoses I and IIIB. Proc Natl Acad Sci USA 100: 1902–1907.

    Article  PubMed  CAS  Google Scholar 

  • Pellegatta S, Tunici P, Poliani PL, et al (2006) The therapeutic potential of neural stem/progenitor cells in murine globoid cell leukodystrophy is conditioned by macrophage/microglia activation. Neurobiol Dis 21: 314–323.

    Article  PubMed  CAS  Google Scholar 

  • Priller J, Flugel A, Wehner T, et al (2001) Targeting gene-modified hematopoietic cells to the central nervous system: use of green fluorescent protein uncovers microglial engraftment. Nat Med 7: 1356–1361.

    Article  PubMed  CAS  Google Scholar 

  • Rauschka H, Colsch B, Baumann N, et al (2006) Late-onset metachromatic leukodystrophy: genotype strongly influences phenotype. Neurology 67: 859–863.

    Article  PubMed  CAS  Google Scholar 

  • Roces DP, Lullmann-Rauch R, Peng J, et al (2004) Efficacy of enzyme replacement therapy in alpha-mannosidosis mice: a preclinical animal study. Hum Mol Genet 13: 1979–1988.

    Article  PubMed  CAS  Google Scholar 

  • Saravanan K, Schaeren-Wiemers N, Klein D, et al (2004) Specific downregulation and mistargeting of the lipid raft-associated protein MAL in a glycolipid storage disorder. Neurobiol Dis 16: 396–406.

    Article  PubMed  CAS  Google Scholar 

  • Sevin C, Benraiss A, Van Dam D, et al (2006a) Intracerebral adeno-associated virus-mediated gene transfer in rapidly progressive forms of metachromatic leukodystrophy. Hum Mol Genet 15: 53–64.

    Article  CAS  Google Scholar 

  • Sevin C, Verot L, Benraiss A, et al (2006b) Partial cure of established disease in an animal model of metachromatic leukodystrophy after intracerebral adeno-associated virus-mediated gene transfer. Gene Ther Nov 9 [Epub ahead of print; doi: 10.1038/sj.gt.3302883].

  • Simon BM, Malisan F, Testi R, Nicotera P, Leist M (2002) Disialoganglioside GD3 is released by microglia and induces oligodendrocyte apoptosis. Cell Death Differ 9: 758–767.

    Article  PubMed  CAS  Google Scholar 

  • Takakusaki Y, Hisayasu S, Hirai Y, Shimada T (2005) Coexpression of formylglycine-generating enzyme is essential for synthesis and secretion of functional arylsulfatase A in a mouse model of metachromatic leukodystrophy. Hum Gene Ther 16: 929–936.

    Article  PubMed  CAS  Google Scholar 

  • Taylor CM, Marta CB, Bansal R, Pfeiffer SE (2004) The transport, assembly, and function of myelin lipids. In: Lazzarini RA, ed. Myelin Biology and Disorders, vol. 1. New York: Academic Press, 57–88.

    Google Scholar 

  • Tessitore A, del P Martin M, Sano R, et al (2004) GM1-ganglioside-mediated activation of the unfolded protein response causes neuronal death in a neurodegenerative gangliosidosis. Mol Cell 15: 753–766.

    Article  PubMed  CAS  Google Scholar 

  • Tyynela J, Cooper JD, Khan MN, Shemilts SJ, Haltia M (2004) Hippocampal pathology in the human neuronal ceroid-lipofuscinoses: distinct patterns of storage deposition, neurodegeneration and glial activation. Brain Pathol 14: 349–357.

    Article  PubMed  Google Scholar 

  • Vogler C, Levy B, Grubb JH, et al (2005) Overcoming the blood-brain barrier with high-dose enzyme replacement therapy in murine mucopolysaccharidosis VII. Proc Natl Acad Sci USA 102: 14777–14782.

    Article  PubMed  CAS  Google Scholar 

  • von Figura K, Gieselmann V, Jaeken J (2001) Metachromatic leukodystrophy. In: Scriver CR, Beaudet al, Sly WS, Valle D, eds; Childs B, Kinzler KW, Vogelstein B, assoc, eds. The Metabolic and Molecular Bases of Inherited Disease, 8th edn. New York: McGraw-Hill, 3695–3724.

    Google Scholar 

  • Walkley SU (1998) Cellular pathology of lysosomal storage disorders. Brain Pathol 8: 175–193.

    Article  PubMed  CAS  Google Scholar 

  • Wittke D, Hartmann D, Gieselmann V, Lullmann-Rauch R (2004) Lysosomal sulfatide storage in the brain of arylsulfatase A-deficient mice: cellular alterations and topographic distribution. Acta Neuropathol (Berl) 108: 261–271.

    Article  CAS  Google Scholar 

  • Yaghootfam A, Gieselmann V, Eckhardt M (2005) Delay of myelin formation in arylsulphatase A-deficient mice. Eur J Neurosci 21: 711–720.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Cartier.

Additional information

Communicating editor: Verena Peters

Competing interests: None declared

References to electronic databases: Arylsulfatase A (EC 3.1.6.8)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sevin, C., Aubourg, P. & Cartier, N. Enzyme, cell and gene-based therapies for metachromatic leukodystrophy. J Inherit Metab Dis 30, 175–183 (2007). https://doi.org/10.1007/s10545-007-0540-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-007-0540-z

Keywords

Navigation