Skip to main content

Advertisement

Log in

A microfluidic imaging chamber for the direct observation of chemotactic transmigration

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

To study the roles of nonmuscle myosin II (NM-II) during invasive cell migration, microfluidic migration chambers have been designed and fabricated using photo- and soft-lithography microfabrication techniques. The chamber consists of two channels separated by a vertical barrier with multiple bays of pores with widths varying from 6 µm to 16 µm, and lengths varying from 25 µm to 50 µm. The cells are plated in the channel on one side of the barrier while a chemoattractant is flowed through the channel on the other side of the barrier. In these chambers, cells can be observed with transmitted light or fluorescence optics while they chemotax through various sized pores that impose differential mechanical resistance to transmigration. As an initial test of this device, we compared breast-cancer cell chemotactic transmigration through different pore sizes with and without inhibition of NM-II. Two distinct rates were observed as cells attempted to pull their nucleus through the smaller pores, and the faster nuclear transit mode was critically dependent on NM-II motor activity. The ability to monitor cells as they chemotax through pores of different dimensions within a single experimental system provides novel information on how pore size affects cell morphology and migration rate, providing a dramatic improvement of imaging potential relative to other in vitro transmigration systems such as Boyden chambers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • V.V. Abhyankar, M.A. Lokuta, A. Huttenlocher, D.J. Beebe, Characterization of a membrane-based gradient generator for use in cell-signaling studies. Lab Chip 6, 389–393 (2006)

    Article  Google Scholar 

  • J. Atencia, J. Morrow, L.E. Locascio, The microfluidic palette: a diffusive gradient generator with spatio-temporal control. Lab Chip 9, 2707–2714 (2009)

    Article  Google Scholar 

  • C. Beadle, M.C. Assanah, P. Monzo, R. Vallee, S.S. Rosenfeld, P. Canoll, The role of myosin II in glioma invasion of the brain. Mol. Biol. Cell 19, 3357–3368 (2008)

    Article  Google Scholar 

  • H.C. Berg, E.M. Purcell, Physics of chemoreception. Biophys. J. 20, 193–219 (1977)

    Article  Google Scholar 

  • C. Beta, T. Frohlich, H.U. Bodeker, E. Bodenschatz, Chemotaxis in microfluidic devices—a study of flow effects. Lab Chip 8, 1087–1096 (2008)

    Article  Google Scholar 

  • W. Bialek, S. Setayeshgar, Physical limits to biochemical signaling. Proc. Natl Acad. Sci. USA 102, 10040–10045 (2005)

    Article  Google Scholar 

  • R.B. Bird, W.E. Stewart, E.N. Lightfoot. Transport Phenomena. (Wiley, 2006)

  • S. Bulotta, M.V. Ierardi, J. Maiuolo, M.G. Cattaneo, A. Cerullo, L.M. Vicentini, N. Borgese, Basal nitric oxide release attenuates cell migration of HeLa and endothelial cells. Biochem. Biophys. Res. Commun. 386, 744–749 (2009)

    Article  Google Scholar 

  • Y. Cai, N. Biais, G. Giannone, M. Tanase, G. Jiang, J.M. Hofman, C.H. Wiggins, P. Silberzan, A. Buguin, B. Ladoux, M.P. Sheetz, Nonmuscle myosin IIA-dependent force inhibits cell spreading and drives F-actin flow. Biophys. J. 91, 3907–3920 (2006)

    Article  Google Scholar 

  • S.Y. Cheng, S. Heilman, M. Wasserman, S. Archer, M.L. Shuler, M. Wu, A hydrogel-based microfluidic device for the studies of directed cell migration. Lab Chip. 7, 763–769 (2007)

    Article  Google Scholar 

  • J. Condeelis, J.W. Pollard, Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124, 263–266 (2006)

    Article  Google Scholar 

  • S. Even-Ram, A.D. Doyle, M.A. Conti, K. Matsumoto, R.S. Adelstein, K.M. Yamada, Myosin IIA regulates cell motility and actomyosin-microtubule crosstalk. Nat. Cell Biol. 9, 299–309 (2007)

    Article  Google Scholar 

  • C.W. Frevert, G. Boggy, T.M. Keenan, A. Folch, Measurement of cell migration in response to an evolving radial chemokine gradient triggered by a microvalve. Lab Chip 6, 849–856 (2006)

    Article  Google Scholar 

  • P. Friedl, Prespecification and plasticity: shifting mechanisms of cell migration. Curr. Opin. Cell Biol. 16, 14–23 (2004)

    Article  Google Scholar 

  • C.G. Galbraith, M.P. Sheetz, Keratocytes pull with similar forces on their dorsal and ventral surfaces. J. Cell Biol. 147, 1313–1324 (1999)

    Article  Google Scholar 

  • S. Hu, J. Chen, J.P. Butler, N. Wang, Prestress mediates force propagation into the nucleus. Biochem. Biophys. Res. Commun. 329, 423–428 (2005)

    Article  Google Scholar 

  • D. Irimia, D.A. Geba, M. Toner, Universal microfluidic gradient generator. Anal. Chem. 78, 3472–3477 (2006)

    Article  Google Scholar 

  • D. Irimia, G. Charras, N. Agrawal, T. Mitchison, M. Toner, Polar stimulation and constrained cell migration in microfluidic channels. Lab Chip. 7, 1783–1790 (2007)

    Article  Google Scholar 

  • N.L. Jeon, S.K.W. Dertinger, D.T. Chiu, I.S. Choi, A.D. Stroock, G.M. Whitesides, Generation of solution and surface gradients using microfluidic systems. Langmuir 16, 8311–8316 (2000)

    Article  Google Scholar 

  • T. Lammermann, M. Sixt, Mechanical modes of ‘amoeboid’ cell migration. Curr. Opin. Cell Biol. 21, 636–644 (2009)

    Article  Google Scholar 

  • T. Lammermann, B.L. Bader, S.J. Monkley, T. Worbs, R. Wedlich-Soldner, K. Hirsch, M. Keller, R. Forster, D.R. Critchley, R. Fassler, M. Sixt, Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453, 51–55 (2008)

    Article  Google Scholar 

  • Z.H. Li, A.R. Bresnick, The S100A4 metastasis factor regulates cellular motility via a direct interaction with myosin-IIA. Cancer Res. 66, 5173–5180 (2006)

    Article  Google Scholar 

  • J.N. Li, H. Baskaran, S.K. Dertinger, G.M. Whitesides, L. Van de Water, M. Toner, Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat.Biotechnol. 20, 826–830 (2002)

    Article  Google Scholar 

  • Z. Liu, L.A. van Grunsven, E. Van Rossen, B. Schroyen, J.P. Timmermans, A. Geerts, H. Reynaert, Blebbistatin inhibits contraction and accelerates migration in mouse hepatic stellate cells (Br. J, Pharmacol, 2009)

    Google Scholar 

  • C.M. Lo, D.B. Buxton, G.C. Chua, M. Dembo, R.S. Adelstein, Y.L. Wang, Nonmuscle myosin IIb is involved in the guidance of fibroblast migration. Mol. Biol. Cell 15, 982–989 (2004)

    Article  Google Scholar 

  • Y. Mishima, M. Lotz, Chemotaxis of human articular chondrocytes and mesenchymal stem cells. J. Orthop. Res. 26, 1407–1412 (2008)

    Article  Google Scholar 

  • G. Ofek, R.M. Natoli, K.A. Athanasiou, In situ mechanical properties of the chondrocyte cytoplasm and nucleus. J. Biomech. 42, 873–877 (2009)

    Article  Google Scholar 

  • Z. Pan, K. Ghosh, Y. Liu, R.A. Clark, M.H. Rafailovich, Traction stresses and translational distortion of the nucleus during fibroblast migration on a physiologically relevant ECM mimic. Biophys. J. 96, 4286–4298 (2009)

    Article  Google Scholar 

  • K. Pankova, D. Rosel, M. Novotny, J. Brabek, The molecular mechanisms of transition between mesenchymal and amoeboid invasiveness in tumor cells (Cell Mol, Life Sci, 2009)

    Google Scholar 

  • A.J. Ridley, M.A. Schwartz, K. Burridge, R.A. Firtel, M.H. Ginsberg, G. Borisy, J.T. Parsons, A.R. Horwitz, Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003)

    Article  Google Scholar 

  • R.G. Rowe, S.J. Weiss, Breaching the basement membrane: who, when and how? Trends Cell Biol 18, 560–574 (2008)

    Article  Google Scholar 

  • W. Saadi, S.J. Wang, F. Lin, N.L. Jeon, A parallel-gradient microfluidic chamber for quantitative analysis of breast cancer cell chemotaxis. Biomed. Microdevices 8, 109–118 (2006)

    Article  Google Scholar 

  • W. Saadi, S.W. Rhee, F. Lin, B. Vahidi, B.G. Chung, N.L. Jeon, Generation of stable concentration gradients in 2D and 3D environments using a microfluidic ladder chamber. Biomed. Microdevices 9, 627–635 (2007)

    Article  Google Scholar 

  • B.T. Schaar, S.K. McConnell, Cytoskeletal coordination during neuronal migration. Proc. Natl Acad. Sci. USA 102, 13652–13657 (2005)

    Article  Google Scholar 

  • L.M. Shaw, Tumor cell invasion assays. Methods Mol. Biol. 294, 97–105 (2005)

    Google Scholar 

  • D.R. Sherwood, Cell invasion through basement membranes: an anchor of understanding. Trends Cell Biol. 16, 250–256 (2006)

    Article  Google Scholar 

  • G.M. Walker, J. Sai, A. Richmond, M. Stremler, C.Y. Chung, J.P. Wikswo, Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient generator. Lab Chip 5, 611–618 (2005)

    Article  Google Scholar 

  • K. Wolf, R. Muller, S. Borgmann, E.B. Brocker, P. Friedl, Amoeboid shape change and contact guidance: T-lymphocyte crawling through fibrillar collagen is independent of matrix remodeling by MMPs and other proteases. Blood 102, 3262–3269 (2003)

    Article  Google Scholar 

  • A.P. Wong, R. Perez-Castillejos, L.J. Christopher, G.M. Whitesides, Partitioning microfluidic channels with hydrogel to construct tunable 3-D cellular microenvironments. Biomaterials 29, 1853–1861 (2008)

    Article  Google Scholar 

  • H. Wu, B. Huang, R.N. Zare, Generation of complex, static solution gradients in microfluidic channels. J. Am. Chem. Soc. 128, 4194–4195 (2006)

    Article  Google Scholar 

Download references

Acknowledgment

The authors thank Wan-Hsiang Liang for help with SEM. The research is supported by a NIH grant (EB006203) to H. Baskaran and a NIH grant (GM077224) to T. Egelhoff.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harihara Baskaran.

Additional information

Thomas T. Egelhoff and Harihara Baskaran contributed equally, and are co-senior authors on this publication.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

Three ‘fast’ cells can be seen migrating towards and through a 50 × 6 μm pore (0–4 s). A ‘slow’ cell can be seen extending its leading edge towards the pore starting at ∼3 s, and migrating through the pore between seconds 5–8. Movie displayed at 20 frames sec-1, made from 17 h timelapse experiment, images taken every 5 min (MPG 3468 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breckenridge, M.T., Egelhoff, T.T. & Baskaran, H. A microfluidic imaging chamber for the direct observation of chemotactic transmigration. Biomed Microdevices 12, 543–553 (2010). https://doi.org/10.1007/s10544-010-9411-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-010-9411-8

Keywords

Navigation