Skip to main content
Log in

Microfluidic gradient PCR (MG-PCR): a new method for microfluidic DNA amplification

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

This study develops a new microfluidic DNA amplification strategy for executing parallel DNA amplification in the microfluidic gradient polymerase chain reaction (MG-PCR) device. The developed temperature gradient microfluidic system is generated by using an innovative fin design. The device mainly consists of modular thermally conductive copper flake which is attached onto a finned aluminum heat sink with a small fan. In our microfluidic temperature gradient prototype, a non-linear temperature gradient is produced along the gradient direction. On the copper flake of length 45 mm, width 40 mm and thickness 4 mm, the temperature gradient easily spans the range from 97 to 52°C. By making full use of the hot (90–97°C) and cold (60–70°C) regions on the temperature gradient device, the parallel, two-temperature MG-PCR amplification is feasible. As a demonstration, the MG-PCR from three parallel reactions of 112-bp Escherichia coli DNA fragment is performed in a continuous-flow format, in which the flow of the PCR reagent in the closed loop is induced by the buoyancy-driven nature convection. Although the prototype is not optimized, the MG-PCR amplification can be completed in less than 45 min. However, the MG-PCR thermocycler presented herein can be further scaled-down, and thus the amplification times and reagent consumption can be further reduced. In addition, the currently developed temperature gradient technology can be applied onto other continuous-flow MG-PCR systems or used for other analytical purposes such as parallel and combination measurements, and fluorescent melting curve analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • P. Baaske, S. Duhr, D. Braun, Appl. Phys. Lett. 91, 133901 (2007)

    Article  Google Scholar 

  • K.M. Balss, D. Ross, H.C. Begley, K.G. Olsen, M.J. Tarlov, J. Am. Chem. Soc 126, 13474–13479 (2004)

    Article  Google Scholar 

  • D. Braun, N.L. Goddard, A. Libchaber, Phys. Rev. Lett. 91, 158103 (2003)

    Article  Google Scholar 

  • J.S. Buch, C. Kimball, F. Rosenberger, W.E. Highsmith Jr. D.L. DeVoe, C.S. Lee, Anal. Chem. 76, 874–881 (2004)

    Article  Google Scholar 

  • J.S. Buch, F. Rosenberger, W.E. Highsmith Jr. C. Kimball, D.L. DeVoe, C.S. Lee, Lab Chip 5, 392–400 (2005)

    Article  Google Scholar 

  • M. Chabert, K.D. Dorfman, P. de Cremoux, J. Roeraade, J.L. Viovy, Anal. Chem. 78, 7722–7728 (2006)

    Article  Google Scholar 

  • M. Chang, H.J. Lee, Anal. Biochem. 340, 174–177 (2005)

    Article  Google Scholar 

  • J.Y. Cheng, C.J. Hsieh, Y.C. Chuang, J.R. Hsieh, Analyst 130, 931–940 (2005)

    Article  Google Scholar 

  • N. Crews, T. Ameel, C. Wittwer, B. Gale, Lab Chip 8, 1922–1929 (2008a)

    Article  Google Scholar 

  • N. Crews, C. Wittwer, B. Gale, Proc. SPIE 6465, 646504 (2007)

    Article  Google Scholar 

  • N. Crews, C. Wittwer, B. Gale, Biomed. Microdevices 10, 187–195 (2008b)

    Article  Google Scholar 

  • N. Crews, C. Wittwer, R. Palais, B. Gale, Lab Chip 8, 919–924 (2008c)

    Article  Google Scholar 

  • N. Crews, C.T. Wittwer, J. Montgomery, R. Pryor, B. Gale, Anal. Chem. 81, 2053–2058 (2009)

    Article  Google Scholar 

  • M. Curcio, J. Roeraade, Anal. Chem. 75, 1–7 (2003)

    Article  Google Scholar 

  • K.D. Dorfman, M. Chabert, J.H. Codarbox, G. Rousseau, P. de Cremoux, J.L. Viovy, Anal. Chem. 77, 3700–3704 (2005)

    Article  Google Scholar 

  • S. Duhr, D. Braun, Proc. Natl. Acad. Sci. U. S. A. 103, 19678–19682 (2006)

    Article  Google Scholar 

  • H.C. Fan, S.R. Quake, Anal. Chem. 79, 7576–7579 (2007)

    Article  Google Scholar 

  • J. Grover, R.D. Juncosa, N. Stoffel, M. Boysel, A.I. Brooks, M.P. McLoughlin, D.W. Robbins, IEEE Sens. J. 8, 476–487 (2008)

    Article  Google Scholar 

  • T. Kajiyama, Y. Miyahara, L.J. Kricka, P. Wilding, D.J. Graves, S. Surrey, P. Fortina, Genome Res. 13, 467–475 (2003)

    Article  Google Scholar 

  • D.J. Kinahan, T.M. Dalton, M.R.D. Davies, Biomed. Microdevices 11(4), 747–754 (2009)

    Google Scholar 

  • M.M. Kiss, L. Ortoleva-Donnelly, N.R. Beer, J. Warner, C.G. Bailey, B.W. Colston, J.M. Rothberg, D.R. Link, J.H. Leamon, Anal. Chem. 80, 8975–8981 (2008)

    Article  Google Scholar 

  • M.U. Kopp, A.J. de Mello, A. Manz, Science 280, 1046–1048 (1998)

    Article  Google Scholar 

  • M. Krishnan, V.M. Ugaz, M.A. Burns, Science 298, 793 (2002)

    Article  Google Scholar 

  • Y.Y. Li, D. Xing, C.S. Zhang, Anal. Biochem. 385, 42–49 (2009)

    Article  Google Scholar 

  • H. Mao, M.A. Holden, M. You, P.S. Cremer, Anal. Chem 74, 5071–5075 (2002a)

    Article  Google Scholar 

  • H. Mao, T. Yang, P.S. Cremer, J. Am, Chem. Soc. 124, 4432–4435 (2002b)

    Article  Google Scholar 

  • T. Morrison, J. Hurley, J. Garcia, K. Yoder, A. Katz, D. Roberts, J. Cho, T. Kanigan, S.E. Ilyin, D. Horowitz, J.M. Dixon, C.J. Brenan, Nucleic Acids Res. 34, e123 (2006)

    Article  Google Scholar 

  • H. Nagai, Y. Murakami, K. Yokoyama, E. Tamiya, Biosens. Bioelectron 16, 1015–1019 (2001)

    Article  Google Scholar 

  • P.J. Obeid, T.K. Christopoulos, H.J. Crabtree, C.J. Backhouse, Anal. Chem. 75, 288–295 (2003)

    Article  Google Scholar 

  • T. Ohashi, H. Kuyama, N. Hanafusa, Y. Togawa, Biomed. Microdevices 9, 695–702 (2007)

    Article  Google Scholar 

  • V.C. Padmakumar, R. Varadarajan, Anal. Biochem. 314, 310–315 (2003)

    Article  Google Scholar 

  • N. Park, S. Kim, H. Hahn, Anal. Chem. 75, 6029–6033 (2003)

    Article  Google Scholar 

  • D. Ross, L.E. Locascio, Anal. Chem. 74, 2556–2564 (2002)

    Article  Google Scholar 

  • W. Rychlik, W.J. Spencer, R.E. Rhoads, Nucleic Acids Res. 18, 6409–6412 (1990)

    Article  Google Scholar 

  • Y. Schaerli, R.C. Wootton, T. Robinson, V. Stein, C. Dunsby, M.A. Neil, P.M. French, A.J. Demello, C. Abell, F. Hollfelder, Anal. Chem. 81, 302–306 (2009)

    Article  Google Scholar 

  • Y.H. Shim, C.D. Park, D.H. Kim, J.H. Cho, M.H. Cho, H.J. Kim, Biol. Pharm. Bull. 28, 671–676 (2005)

    Article  Google Scholar 

  • N. Stoffel, A. Fisher, S.S. Tan, M. Boysel, Proceedings of 57th Electronic Components & Technology Conference, Reno, NV, 2007, pp, 1561-1566 (2007)

  • Y. Sun, N.T. Nguyen, Y.C. Kwok, Anal. Chem. 80, 6127–6130 (2008)

    Article  Google Scholar 

  • W. Sybesma, J. Hugenholtz, I. Mierau, M. Kleerebezem, Biotechniques 31, 466, 468, 470, 472 (2001)

  • P. Wilding, M.A. Shoffner, L.J. Kricka, Clin. Chem. 40, 1815–1818 (1994)

    Google Scholar 

  • D.Y. Wu, L. Ugozzoli, B.K. Pal, J. Qian, R.B. Wallace, DNA Cell Biol. 10, 233–238 (1991)

    Article  Google Scholar 

  • C.S. Zhang, D. Xing, Nucleic Acids Res. 35, 4223–4237 (2007)

    Article  Google Scholar 

  • C.S. Zhang, D. Xing, Y.Y. Li, Biotechnol. Adv. 25, 483–514 (2007a)

    Article  Google Scholar 

  • C.S. Zhang, J.L. Xu, W.L. Ma, W.L. Zheng, Biotechnol. Adv. 24, 243–284 (2006)

    Article  Google Scholar 

  • C.S. Zhang, J.L. Xu, J.Q. Wang, H.P. Wang, Anal. Lett. 40, 497–511 (2007b)

    Article  Google Scholar 

  • H.D. Zhang, J. Zhou, Z.R. Xu, J. Song, J. Dai, J. Fang, Z.L. Fang, Lab Chip 7, 1162–1167 (2007c)

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (30700155; 30870676; 30800261), the Program for Changjiang Scholars and Innovative Research Team in University (IRT0829) and the National High Technology Research and Development Program of China (863 Program) (2007AA10Z204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da Xing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, C., Xing, D. Microfluidic gradient PCR (MG-PCR): a new method for microfluidic DNA amplification. Biomed Microdevices 12, 1–12 (2010). https://doi.org/10.1007/s10544-009-9352-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-009-9352-2

Keywords

Navigation