Skip to main content

Advertisement

Log in

Nanotechnology for breast cancer therapy

  • Short Report
  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Breast cancer is the field of medicine with the greatest presence of nanotechnological therapeutic agents in the clinic. A pegylated form of liposomally encapsulated doxorubicin is routinely used for treatment against metastatic cancer, and albumin nanoparticulate chaperones of paclitaxel were approved for locally recurrent and metastatic disease in 2005. These drugs have yielded substantial clinical benefit, and are steadily gathering greater beneficial impact. Clinical trials currently employing these drugs in combination with chemo and biological therapeutics exceed 150 worldwide. Despite these advancements, breast cancer morbidity and mortality is unacceptably high. Nanotechnology offers potential solutions to the historical challenge that has rendered breast cancer so difficult to contain and eradicate: the extreme biological diversity of the disease presentation in the patient population and in the evolutionary changes of any individual disease, the multiple pathways that drive disease progression, the onset of ‘resistance’ to established therapeutic cocktails, and the gravity of the side effects to treatment, which result from generally very poor distribution of the injected therapeutic agents in the body. A fundamental requirement for success in the development of new therapeutic strategies is that breast cancer specialists—in the clinic, the pharmaceutical and the basic biological laboratory—and nanotechnologists—engineers, physicists, chemists and mathematicians—optimize their ability to work in close collaboration. This further requires a mutual openness across cultural and language barriers, academic reward systems, and many other ‘environmental’ divides. This paper is respectfully submitted to the community to help foster the mutual interactions of the breast cancer world with micro- and nano-technology, and in particular to encourage the latter community to direct ever increasing attention to breast cancer, where an extraordinary beneficial impact may result. The paper initiates with an introductory overview of breast cancer, its current treatment modalities, and the current role of nanotechnology in the clinic. Our perspectives are then presented on what the greatest opportunities for nanotechnology are; this follows from an analysis of the role of biological barriers that adversely determine the biological distribution of intravascularly injected therapeutic agents. Different generations of nanotechnology tools for drug delivery are reviewed, and our current strategy for addressing the sequential bio-barriers is also presented, and is accompanied by an encouragement to the community to develop even more effective ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • M.S. Aapro, Adjuvant therapy of primary breast cancer: a review of key findings from the 7th international conference, St. Gallen, February 2001 Oncologist 6, 376–385 (2001) doi:10.1634/theoncologist.6-4-376

    Article  Google Scholar 

  • M. Azemar, S. Djahansouzi, E. Jager, C. Solbach, M. Schmidt, A.B. Maurer et al., Regression of cutaneous tumor lesions in patients intratumorally injected with a recombinant single-chain antibody-toxin targeted to ErbB2/HER2 Breast Cancer Res. Treat. 82, 155–164 (2003) doi:10.1023/B:BREA.0000004371.48757.19

    Article  Google Scholar 

  • D.C. Bibby, J.E. Talmadge, M.K. Dalal, S.G. Kurz, K.M. Chytil, S.E. Barry et al., Pharmacokinetics and biodistribution of RGD-targeted doxorubicin-loaded nanoparticles in tumor-bearing mice Int. J. Pharm. 293, 281–290 (2005) doi:10.1016/j.ijpharm.2004.12.021

    Article  Google Scholar 

  • N. Bogdanova, S. Feshchenko, C. Cybulski, T. Dork, CHEK2 mutation and hereditary breast cancer J. Clin. Oncol. 25, e26 (2007) doi:10.1200/JCO.2007.11.4223

    Article  Google Scholar 

  • Y. Boucher, L.T. Baxter, R.K. Jain, Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy Cancer Res. 50, 4478–4484 (1990)

    Google Scholar 

  • Y. Boucher, J.M. Kirkwood, D. Opacic, M. Desantis, R.K. Jain, Interstitial hypertension in superficial metastatic melanomas in humans Cancer Res. 51, 6691–6694 (1991)

    Google Scholar 

  • P. Buchler, H.A. Reber, M.M. Roth, M. Shiroishi, H. Friess, O.J. Hines, Target therapy using a small molecule inhibitor against angiogenic receptors in pancreatic cancer Neoplasia 9, 119–127 (2007) doi:10.1593/neo.06616

    Article  Google Scholar 

  • L.A. Carey, E.C. Dees, L. Sawyer, L. Gatti, D.T. Moore, F. Collichio et al., The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes Clin. Cancer Res. 13, 2329–2334 (2007) doi:10.1158/1078-0432.CCR-06-1109

    Article  Google Scholar 

  • S. Cleator, W. Heller, R.C. Coombes, Triple-negative breast cancer: therapeutic options Lancet Oncol. 8, 235–244 (2007) doi:10.1016/S1470-2045(07)70074-8

    Article  Google Scholar 

  • M.J. Cloninger, Biological applications of dendrimers Curr. Opin. Chem. Biol. 6, 742–748 (2002) doi:10.1016/S1367-5931(02)00400-3

    Article  Google Scholar 

  • M.A. Cobleigh, C.L. Vogel, D. Tripathy, N.J. Robert, S. Scholl, L. Fehrenbacher et al., Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease J. Clin. Oncol. 17, 2639–2648 (1999)

    Google Scholar 

  • J. Cuzick, T. Powles, U. Veronesi, J. Forbes, R. Edwards, S. Ashley et al., Overview of the main outcomes in breast-cancer prevention trials Lancet 361, 296–300 (2003) doi:10.1016/S0140-6736(03)12342-2

    Article  Google Scholar 

  • A.M. Davidoff, P.A. Humphrey, J.D. Iglehart, J.R. Marks, Genetic basis for p53 overexpression in human breast cancer Proc. Natl. Acad. Sci. USA 88, 5006–5010 (1991) doi:10.1073/pnas.88.11.5006

    Article  Google Scholar 

  • P. Decuzzi, M. Ferrari, The adhesive strength of non-spherical particles mediated by specific interactions Biomaterials 27, 5307–5314 (2006) doi:10.1016/j.biomaterials.2006.05.024

    Article  Google Scholar 

  • P. Decuzzi, M. Ferrari, Design maps for nanoparticles targeting the diseased microvasculature Biomaterials 29, 377–384 (2008)

    Google Scholar 

  • P. Decuzzi, S. Lee, B. Bhushan, M. Ferrari, A theoretical model for the margination of particles within blood vessels Ann. Biomed. Eng. 33, 179–190 (2005) doi:10.1007/s10439-005-8976-5

    Article  Google Scholar 

  • P. Decuzzi, R. Pasqualini, W. Arap, M. Ferrari, Intravascular delivery of particulate systems: Does geometry really matter? Pharm. Res. (2008) Accepted

  • A. Di Paolo, Liposomal anticancer therapy: pharmacokinetic and clinical aspects J. Chemother. 16(Suppl 4), 90–93 (2004)

    Google Scholar 

  • R. Duncan, The dawning era of polymer therapeutics Nat. Rev. Drug Discov. 2, 347–360 (2003) doi:10.1038/nrd1088

    Article  Google Scholar 

  • Early Breast Cancer Trialists’ Collaborative Group, Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials Lancet 365, 1687–1717 (2005) doi:10.1016/S0140-6736(05)66544-0

    Google Scholar 

  • J.M. Elwood, B. Cox, A.K. Richardson, The effectiveness of breast cancer screening by mammography in younger women. Online J. Curr. Clin. Trials Doc No 32:[23,227 words; 195 paragraphs] (1993)

  • O.C. Farokhzad, J. Cheng, B.A. Teply, I. Sherifi, S. Jon, P.W. Kantoff et al., Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo Proc. Natl. Acad. Sci. USA 103, 6315–6320 (2006a) doi:10.1073/pnas.0601755103

    Article  Google Scholar 

  • O.C. Farokhzad, J.M. Karp, R. Langer, Nanoparticle-aptamer bioconjugates for cancer targeting Expert Opin. Drug Deliv. 3, 311–324 (2006b) doi:10.1517/17425247.3.3.311

    Article  Google Scholar 

  • B.M. Fendly, M. Winget, R.M. Hudziak, M.T. Lipari, M.A. Napier, A. Ullrich, Characterization of murine monoclonal antibodies reactive to either the human epidermal growth factor receptor or HER2/neu gene product Cancer Res. 50, 1550–1558 (1990)

    Google Scholar 

  • M. Ferrari, Cancer nanotechnology: opportunities and challenges Nat. Rev. Cancer 5, 161–171 (2005a) doi:10.1038/nrc1566

    Article  Google Scholar 

  • M. Ferrari, Nanovector therapeutics Curr. Opin. Chem. Biol. 9, 343–346 (2005b) doi:10.1016/j.cbpa.2005.06.001

    Article  Google Scholar 

  • M. Ferrari, Beyond drug delivery Nat. Nanotechnol. 3, 131–132 (2008a) doi:10.1038/nnano.2008.46

    Article  Google Scholar 

  • M. Ferrari, Cancer Nanotechnology, in Cancer Medicine e.8, ed. by R. Bast, E. Frei, J.F. Holland, et al. (BC Decker Inc.), (2008b) (in press)

  • B. Fisher, J.P. Costantino, D.L. Wickerham, R.S. Cecchini, W.M. Cronin, A. Robidoux et al., Tamoxifen for the prevention of breast cancer: current status of the National Surgical Adjuvant Breast and Bowel Project P-1 study J. Natl. Cancer Inst. 97, 1652–1662 (2005)

    Google Scholar 

  • F.A. Fornari, J.K. Randolph, J.C. Yalowich, M.K. Ritke, D.A. Gewirtz, Interference by doxorubicin with DNA unwinding in MCF-7 breast tumor cells Mol. Pharmacol. 45, 649–656 (1994)

    Google Scholar 

  • T. Fujita, A scanning electron microscope study of the human spleen Arch. Histol. Jpn. 37, 187–216 (1974)

    Google Scholar 

  • A. Gabizon, H. Shmeeda, A.T. Horowitz, S. Zalipsky, Tumor cell targeting of liposome-entrapped drugs with phospholipid-anchored folic acid-PEG conjugates Adv. Drug Deliv. Rev. 56, 1177–1192 (2004) doi:10.1016/j.addr.2004.01.011

    Article  Google Scholar 

  • F. Gentile, M. Ferrari, P. Decuzzi, The transport of nanoparticles in blood vessels: the effect of vessel permeability and blood rheology Ann. Biomed. Eng. 36, 254–261 (2008) doi:10.1007/s10439-007-9423-6

    Article  Google Scholar 

  • A.M. Gobin, M.H. Lee, N.J. Halas, W.D. James, R.A. Drezek, J.L. West, Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy Nano Lett. 7, 1929–1934 (2007) doi:10.1021/nl070610y

    Article  Google Scholar 

  • S. Green, P. Walter, V. Kumar, A. Krust, J.M. Bornert, P. Argos et al., Human oestrogen receptor cDNA: sequence, expression and homology to v-erb-A Nature 320, 134–139 (1986) doi:10.1038/320134a0

    Article  Google Scholar 

  • J.J. Green, E. Chiu, E.S. Leshchiner, J. Shi, R. Langer, D.G. Anderson, Electrostatic ligand coatings of nanoparticles enable ligand-specific gene delivery to human primary cells Nano Lett. 7, 874–879 (2007) doi:10.1021/nl062395b

    Article  Google Scholar 

  • H. Hashizume, P. Baluk, S. Morikawa, J.W. McLean, G. Thurston, S. Roberge et al., Openings between defective endothelial cells explain tumor vessel leakiness Am. J. Pathol. 156, 1363–1380 (2000)

    Google Scholar 

  • C.H. Heldin, K. Rubin, K. Pietras, A. Ostman, High interstitial fluid pressure—an obstacle in cancer therapy Nat. Rev. Cancer 4, 806–813 (2004) doi:10.1038/nrc1456

    Article  Google Scholar 

  • P. Henneke, D.T. Golenbock, Phagocytosis, innate immunity, and host-pathogen specificity J. Exp. Med. 199, 1–4 (2004) doi:10.1084/jem.20031256

    Article  Google Scholar 

  • L.R. Hirsch, R.J. Stafford, J.A. Bankson, S.R. Sershen, B. Rivera, R.E. Price et al., Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003) doi:10.1073/pnas.2232479100

    Article  Google Scholar 

  • G.N. Hortobagyi, Anthracyclines in the treatment of cancer. An overview Drugs 54(Suppl 4), 1–7 (1997) doi:10.2165/00003495-199754010-00001

    Google Scholar 

  • L. Illum, S.S. Davis, The targeting of drugs parenterally by use of microspheres J. Parenter. Sci. Technol. 36, 242–248 (1982)

    Google Scholar 

  • M. Infanger, M. Shakibaei, P. Kossmehl, S.M. Hollenberg, J. Grosse, S. Faramarzi et al., Intraluminal application of vascular endothelial growth factor enhances healing of microvascular anastomosis in a rat model J. Vasc. Res. 42, 202–213 (2005) doi:10.1159/000085176

    Article  Google Scholar 

  • R.K. Jain, Molecular regulation of vessel maturation Nat. Med. 9, 685–693 (2003) doi:10.1038/nm0603-685

    Article  Google Scholar 

  • A. Jemal, R. Siegel, E. Ward, T. Murray, J. Xu, M.J. Thun, Cancer statistics, 2007 CA Cancer J. Clin. 57, 43–66 (2007)

    Article  Google Scholar 

  • N.W. Kam, M. O'Connell, J.A. Wisdom, H. Dai, Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction Proc. Natl. Acad. Sci. USA 102, 11600–11605 (2005) doi:10.1073/pnas.0502680102

    Article  Google Scholar 

  • M.W. Kanan, T.J. Ryan, A.G. Weddell, The behaviour of the nasal mucosa towards blood borne colloidal carbon in experimental animals Pathol. Eur. 10, 263–276 (1975)

    Google Scholar 

  • M. Karon, S. Weissman, C. Meyer, P. Henry, Studies of DNA, Rna, and Protein Synthesis in Cultured Human Cells Exposed to 8-Azaguanine Cancer Res. 25, 185–192 (1965)

    Google Scholar 

  • K Kerlikowske, Efficacy of screening mammography among women aged 40 to 49 years and 50 to 69 years: comparison of relative and absolute benefit J. Natl. Cancer Inst. Monogr. 22, 79–86 (1997)

    Google Scholar 

  • L.A. Khawli, G.K. Miller, A.L. Epstein, Effect of seven new vasoactive immunoconjugates on the enhancement of monoclonal antibody uptake in tumors Cancer 73, 824–831 (1994) doi:10.1002/1097-0142(19940201)73:3+<824::AID-CNCR2820731312>3.0.CO;2-V

    Article  Google Scholar 

  • G. Konecny, G. Pauletti, M. Pegram, M. Untch, S. Dandekar, Z. Aguilar et al., Quantitative association between HER-2/neu and steroid hormone receptors in hormone receptor-positive primary breast cancer J. Natl. Cancer Inst. 95, 142–153 (2003)

    Article  Google Scholar 

  • N. Kumar, Taxol-induced polymerization of purified tubulin. Mechanism of action J. Biol. Chem. 256, 10435–10441 (1981)

    Google Scholar 

  • V. Kumar, S. Green, A. Staub, P. Chambon, Localisation of the oestradiol-binding and putative DNA-binding domains of the human oestrogen receptor EMBO J. 5, 2231–2236 (1986)

    Google Scholar 

  • V. Kumar, S. Green, G. Stack, M. Berry, J.R. Jin, P. Chambon, Functional domains of the human estrogen receptor Cell 51, 941–951 (1987) doi:10.1016/0092-8674(87)90581-2

    Article  Google Scholar 

  • J.R. Less, T.C. Skalak, E.M. Sevick, R.K. Jain, Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions Cancer Res. 51, 265–273 (1991)

    Google Scholar 

  • J.R. Less, M.C. Posner, Y. Boucher, D. Borochovitz, N. Wolmark, R.K. Jain, Interstitial hypertension in human breast and colorectal tumors Cancer Res. 52, 6371–6374 (1992a)

    Google Scholar 

  • J.R. Less, T.C. Skalak, E.M. Sevick, R.K. Jain, Microvascular network architecture in a mammary carcinoma EXS 61, 74–80 (1992b)

    Google Scholar 

  • J. Li, C. Yen, D. Liaw, K. Podsypanina, S. Bose, S.I. Wang et al., PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer Science 275, 1943–1947 (1997) doi:10.1126/science.275.5308.1943

    Article  Google Scholar 

  • J. Liebmann, J.A. Cook, J.B. Mitchell, Cremophor EL, solvent for paclitaxel, and toxicity Lancet 342, 1428 (1993) doi:10.1016/0140-6736(93)92789-V

    Article  Google Scholar 

  • C. Loo, A. Lowery, N. Halas, J. West, R. Drezek, Immunotargeted nanoshells for integrated cancer imaging and therapy Nano Lett. 5, 709–711 (2005) doi:10.1021/nl050127s

    Article  Google Scholar 

  • H. Maeda, The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting Adv. Enzyme Regul. 41, 189–207 (2001) doi:10.1016/S0065-2571(00)00013-3

    Article  Google Scholar 

  • H. Maeda, J. Fang, T. Inutsuka, Y. Kitamoto, Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications Int. Immunopharmacol. 3, 319–328 (2003) doi:10.1016/S1567-5769(02)00271-0

    Article  Google Scholar 

  • F.J. Martin, K. Melnik, T. West, J. Shapiro, M. Cohen, A.A. Boiarski et al., Acute toxicity of intravenously administered microfabricated silicon dioxide drug delivery particles in mice: preliminary findings Drugs R D. 6, 71–81 (2005) doi:10.2165/00126839-200506020-00002

    Article  Google Scholar 

  • T. Murakami, T. Fujita, M. Miyoshi, Closed circulation in the rat spleen as evidenced by scanning electron microscopy of vascular casts Experientia 29, 1374–1375 (1973) doi:10.1007/BF01922828

    Article  Google Scholar 

  • T. Thei, D. Peter, J.K. Eric Drexler et al., Nan’o.tech.nol’o.gy n. Nat. Nanotechnol. 1, 8–10 (2006) doi 10.1038/nnano.2006.77

  • S.D. Nathanson, L. Nelson, Interstitial fluid pressure in breast cancer, benign breast conditions, and breast parenchyma Ann. Surg. Oncol. 1, 333–338 (1994)

    Google Scholar 

  • D. Neri, R. Bicknell, Tumour vascular targeting Nat. Rev. Cancer 5, 436–446 (2005) doi:10.1038/nrc1627

    Article  Google Scholar 

  • D.W. Nyman, K.J. Campbell, E. Hersh, K. Long, K. Richardson, V. Trieu et al., Phase I and pharmacokinetics trial of ABI-007, a novel nanoparticle formulation of paclitaxel in patients with advanced nonhematologic malignancies J. Clin. Oncol. 23, 7785–7793 (2005) doi:10.1200/JCO.2004.00.6148

    Article  Google Scholar 

  • M.O. Oyewumi, R.J. Mumper, Engineering tumor-targeted gadolinium hexanedione nanoparticles for potential application in neutron capture therapy Bioconjug. Chem. 13, 1328–1335 (2002) doi:10.1021/bc025560x

    Article  Google Scholar 

  • B. Pan, D. Cui, Y. Sheng, C. Ozkan, F. Gao, R. He et al., Dendrimer-Modified Magnetic Nanoparticles Enhance Efficiency of Gene Delivery System Cancer Res. 67, 8156–8163 (2007) doi:10.1158/0008-5472.CAN-06-4762

    Article  Google Scholar 

  • D.M. Parkin, Global cancer statistics in the year 2000 Lancet Oncol. 2, 533–543 (2001) doi:10.1016/S1470-2045(01)00486-7

    Article  Google Scholar 

  • R. Pasqualini, E. Koivunen, E. Ruoslahti, Alpha v integrins as receptors for tumor targeting by circulating ligands Nat. Biotechnol. 15, 542–546 (1997) doi:10.1038/nbt0697-542

    Article  Google Scholar 

  • J. Peng, X. He, K. Wang, W. Tan, H. Li, X. Xing et al., An antisense oligonucleotide carrier based on amino silica nanoparticles for antisense inhibition of cancer cells Nanomedicine 2, 113–120 (2006)

    Google Scholar 

  • C.M. Perou, T. Sorlie, M.B. Eisen, M. van de Rijn, S.S. Jeffrey, C.A. Rees et al., Molecular portraits of human breast tumours Nature 406, 747–752 (2000) doi:10.1038/35021093

    Article  Google Scholar 

  • Early Breast Cancer Trialists’ Collaborative Group. Polychemotherapy for early breast cancer: an overview of the randomised trials. Early Breast Cancer Trialists’ Collaborative Group. Lancet 352, 930–942 (1998) doi:10.1016/S0140-6736(98)03301-7

    Google Scholar 

  • G.S. Rao, MOde of entry of steroid and thyroid hormones into cells Mol. Cell. Endocrinol. 21, 97–108 (1981) doi:10.1016/0303-7207(81)90047-2

    Article  Google Scholar 

  • R.P. Rapp, B.A. Bivins, Final in-line filtration: removal of contaminants from IV fluids and drugs Hosp. Formul. 18, 1124–1128 (1983)

    Google Scholar 

  • E. Rivera, Liposomal anthracyclines in metastatic breast cancer: clinical update Oncologist 8(Suppl 2), 3–9 (2003) doi:10.1634/theoncologist.8-suppl_2–3

    Article  MathSciNet  Google Scholar 

  • H.D. Roh, Y. Boucher, S. Kalnicki, R. Buchsbaum, W.D. Bloomer, R.K. Jain, Interstitial hypertension in carcinoma of uterine cervix in patients: possible correlation with tumor oxygenation and radiation response Cancer Res. 51, 6695–6698 (1991)

    Google Scholar 

  • W.R. Sanhai, J.H. Sakamoto, R. Canady, M. Ferrari, Seven challenges for nanomedicine Nat. Nanotechnol. 3, 242–244 (2008) doi:10.1038/nnano.2008.114

    Article  Google Scholar 

  • V. Sharifi-Salamatian, B. Pesquet-Popescu, J. Simony-Lafontaine, J.P. Rigaut, Index for spatial heterogeneity in breast cancer J. Microsc. 216, 110–122 (2004) doi:10.1111/j.0022-2720.2004.01398.x

    Article  MathSciNet  Google Scholar 

  • D. Simberg, T. Duza, J.H. Park, M. Essler, J. Pilch, L. Zhang et al., Biomimetic amplification of nanoparticle homing to tumors Proc. Natl. Acad. Sci. USA 104, 932–936 (2007) doi:10.1073/pnas.0610298104

    Article  Google Scholar 

  • D.J. Slamon, G.M. Clark, S.G. Wong, W.J. Levin, A. Ullrich, W.L. McGuire, Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene Science 235, 177–182 (1987) doi:10.1126/science.3798106

    Article  Google Scholar 

  • D.J. Slamon, W. Godolphin, L.A. Jones, J.A. Holt, S.G. Wong, D.E. Keith et al., Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer Science 244, 707–712 (1989) doi:10.1126/science.2470152

    Article  Google Scholar 

  • D.J. Slamon, B. Leyland-Jones, S. Shak, H. Fuchs, V. Paton, A. Bajamonde et al., Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2 N. Engl. J. Med. 344, 783–792 (2001) doi:10.1056/NEJM200103153441101

    Article  Google Scholar 

  • E.L. Snyder, C.C. Saenz, C. Denicourt, B.R. Meade, X.S. Cui, I.M. Kaplan et al., Enhanced targeting and killing of tumor cells expressing the CXC chemokine receptor 4 by transducible anticancer peptides Cancer Res. 65, 10646–10650 (2005) doi:10.1158/0008-5472.CAN-05-0118

    Article  Google Scholar 

  • I. Steinhauser, B. Spankuch, K. Strebhardt, K. Langer, Trastuzumab-modified nanoparticles: optimisation of preparation and uptake in cancer cells Biomaterials 27, 4975–4983 (2006) doi:10.1016/j.biomaterials.2006.05.016

    Article  Google Scholar 

  • M. Stohrer, Y. Boucher, M. Stangassinger, R.K. Jain, Oncotic pressure in solid tumors is elevated Cancer Res. 60, 4251–4255 (2000)

    Google Scholar 

  • A.G. Taghian, R. Abi-Raad, S.I. Assaad, A. Casty, M. Ancukiewicz, E. Yeh et al., Paclitaxel decreases the interstitial fluid pressure and improves oxygenation in breast cancers in patients treated with neoadjuvant chemotherapy: clinical implications J. Clin. Oncol. 23, 1951–1961 (2005) doi:10.1200/JCO.2005.08.119

    Article  Google Scholar 

  • A. Takeda, T. Miyoshi, H. Shimada, T. Ochiai, K. Isono, Enhanced effects of monoclonal antibody carboplatin immunoconjugates uptake and anti-tumor effects with angiotensin II and tumor necrosis factor J. Chemother. 11, 137–143 (1999)

    Google Scholar 

  • E. Tasciotti, X.W. Liu, R. Bhavane, K. Plant, A.D. Leonard, B.K. Price et al., Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications Nat. Nanotechnol. 3, 151–157 (2008) doi:10.1038/nnano.2008.34

    Article  Google Scholar 

  • K. Umesono, R.M. Evans, Determinants of target gene specificity for steroid/thyroid hormone receptors Cell 57, 1139–1146 (1989) doi:10.1016/0092-8674(89)90051-2

    Article  Google Scholar 

  • D.D. Von Hoff, M.W. Layard, P. Basa, H.L. Davis Jr., A.L. Von Hoff, M. Rozencweig et al., Risk factors for doxorubicin-induced congestive heart failure Ann. Intern. Med. 91, 710–717 (1979)

    Google Scholar 

  • P.L. Welcsh, M.C. King, BRCA1 and BRCA2 and the genetics of breast and ovarian cancer Hum. Mol. Genet. 10, 705–713 (2001) doi:10.1093/hmg/10.7.705

    Article  Google Scholar 

  • E. Wisse, F. Braet, D. Luo, R. De Zanger, D. Jans, E. Crabbe et al., Structure and function of sinusoidal lining cells in the liver Toxicol. Pathol. 24, 100–111 (1996)

    Article  Google Scholar 

  • L. Witte, D.J. Hicklin, Z. Zhu, B. Pytowski, H. Kotanides, P. Rockwell et al., Monoclonal antibodies targeting the VEGF receptor-2 (Flk1/KDR) as an anti-angiogenic therapeutic strategy Cancer Metastasis Rev. 17, 155–161 (1998) doi:10.1023/A:1006094117427

    Article  Google Scholar 

  • J. Wu, T. Akaike, K. Hayashida, T. Okamoto, A. Okuyama, H. Maeda, Enhanced vascular permeability in solid tumor involving peroxynitrite and matrix metalloproteinases Jpn. J. Cancer Res. 92, 439–451 (2001)

    Google Scholar 

  • F. Yan, R. Kopelman, The embedding of meta-tetra(hydroxyphenyl)-chlorin into silica nanoparticle platforms for photodynamic therapy and their singlet oxygen production and pH-dependent optical properties Photochem. Photobiol. 78, 587–591 (2003) doi:10.1562/0031-8655(2003)078<0587:TEOMIS>2.0.CO;2

    Article  Google Scholar 

  • F. Yan, H. Xu, J. Anker, R. Kopelman, B. Ross, A. Rehemtulla et al., Synthesis and characterization of silica-embedded iron oxide nanoparticles for magnetic resonance imaging J. Nanosci. Nanotechnol. 4, 72–76 (2004) doi:10.1166/jnn.2004.074

    Article  Google Scholar 

  • X. Yang, H. Wang, D.W. Beasley, D.E. Volk, X. Zhao, B.A. Luxon et al., Selection of thioaptamers for diagnostics and therapeutics Ann. N. Y. Acad. Sci. 1082, 116–119 (2006) doi:10.1196/annals.1348.065

    Article  Google Scholar 

  • Y. Yarden, M.X. Sliwkowski, Untangling the ErbB signalling network Nat. Rev. Mol. Cell Biol. 2, 127–137 (2001) doi:10.1038/35052073

    Article  Google Scholar 

  • K.T. Yong, J. Qian, I. Roy, H.H. Lee, E.J. Bergey, K.M. Tramposch et al., Quantum rod bioconjugates as targeted probes for confocal and two-photon fluorescence imaging of cancer cells Nano Lett. 7, 761–765 (2007) doi:10.1021/nl063031m

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Ferrari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, T., Decuzzi, P., Cristofanilli, M. et al. Nanotechnology for breast cancer therapy. Biomed Microdevices 11, 49–63 (2009). https://doi.org/10.1007/s10544-008-9209-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-008-9209-0

Keywords

Navigation