Skip to main content
Log in

Simulation and experimentation of a microfluidic device based on electrowetting on dielectric

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Electrowetting on dielectric (EWOD) moving fluid by surface tension effects offers some advantages, including simplicity of fabrication, control of minute volumes, rapid mixing, low cost and others. This work presents a numerical model using a commercial software, CFD-ACE+, and an EWOD system including a microfluidic device, a microprocessor, electric circuits, a LCD module, a keypad, a power supply and a power amplifier. The EWOD model based on a reduced form of the mass conservation and momentum equations is adopted to simulate the fluid dynamics of the droplets. The EWOD device consists of the 2 × 2 mm bottom electrodes (Au/Cr), a dielectric layer of 3,000 Å nitride, 500 Å Teflon and a piece of indium tin oxide (ITO)-coated glass as the top electrode. The complete EWOD phenomenon is elucidated by comparing simulation with the experimental data on droplet transportation, cutting and creation. In transportation testing, the speed of the droplet is 6 mm/s at 40 Vdc. In addition, the droplet division process takes 0.12 s at 60 Vdc in the current case. Finally, a 347 nl droplet is successfully created from an on-chip reservoir at 60 Vdc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • C.H. Ahn, M.G. Allen, in Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS) 1995, pp. 408–412

  • P. Auroux, D. Iossifidis, D. Reyes, A. Manz, Anal. Chem. 74, 2637–2652 (2002)

    Article  Google Scholar 

  • S.F. Bart, L.S. Tavrow, M. Mehregany, J.H. Lang, Sens. Actuators, A, 21, 193–197 (1990)

    Article  Google Scholar 

  • G. Beni, S. Hackwood, J.L. Jackel, Appl. Phys. Lett. 40(10), 912–914 (1982)

    Article  Google Scholar 

  • F. Cattaneo, K. Baldwin, S. Yang, T. Krupenkine, S. Ramachandran, J.A. Rogers, J. Microelectromech. Syst. 12(6), 907–912 (2003)

    Article  Google Scholar 

  • S.K. Cho, H. Moon, C.-J. Kim, J. Microelectromech. Syst. 12, 70–80 (2003)

    Article  Google Scholar 

  • D. Gueyffier, J. Li, A. Nadim, R. Scardovelli, S. Zaleski, J. Comput. Phys. 152, 423–456 (1999)

    Article  MATH  Google Scholar 

  • C.W. Hirt, B.D. Nichols, J. Comput. Phys. 39, 201–225 (1981)

    Article  MATH  Google Scholar 

  • L.-S. Jang, Y.-J. Li, S.-J. Lin, Y.-C. Hsu, W.-S. Yao, M.-C. Tsai, C-C. Hou, Biomed. Microdev. 9(2), 185–194 (2007)

    Article  Google Scholar 

  • C.-J. Kim, Micropumping by Electrowetting. (ASME IMECE, New York, 2001) HTD-24200

    Google Scholar 

  • C.-S. Liao, G.-B. Lee, J.-J. Wu, C.-C. Chang, T.-M. Hsieh, F.-C. Huang, C.-H. Luo, Biosens. Bioelectron. 20, 1341–1348 (2005)

    Article  Google Scholar 

  • J. Lee, C.-J. Kim, J. Microelectromech. Syst. 9(2), 171–180 (2000)

    Article  MATH  Google Scholar 

  • J. Lee, H. Moon, J. Fowler, T. Schoellhammer, C.-J. Kim, Sens. Actuators, A 95, 259–268 (2002)

    Article  Google Scholar 

  • M.G. Lippman, Ann. Chim. Phys. 5, 494–459 (1875)

    Google Scholar 

  • W.F. Noh, P.R. Woodward, in Lecture Notes in Physics, vol. 59, ed. by A.I. van de Vooren, P.J. Zandbergen (1976), pp. 330–340

  • W.J. Rider, D.B. Kothe, J. Comput. Phys. 141, 112–152 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • W.J. Rider, D.B. Kothe, S.J. Mosso, J.H. Cerrutti, J.I. Hochstein, in AIAA Paper, 95-0699 (1995)

  • H. Ren, R.B. Fair, M.G. Pollack, Sens. Actuators, B 98, 319–327 (2004)

    Article  Google Scholar 

  • D. Reyes, D. Iossifidis, P. Auroux, A. Manz, Anal. Chem. 74, 2623–2636 (2002)

    Article  Google Scholar 

  • T. Roques-Carmes, R.A. Hayes, B.J. Feenstra, L.J.M. Schlangen, J. Appl. Phys. 95(8), 4389–4396 (2004)

    Article  Google Scholar 

  • T.A. Sammarco, M.A. Burns, AIChE J. 45, 350–366 (1999)

    Google Scholar 

  • R. Scardovelli, S. Zaleski, J. Comput. Phys. 164, 228–237 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • P. Selvaganapathy, Y.-S.L. Ki, P. Renaud, C.H. Mastrangelo, J. Microelectromech. Syst. 11, 448–453 (2002)

    Article  Google Scholar 

  • Y.-C. Shu, Mater. Trans. 43(5), 1037–1044 (2002)

    Article  Google Scholar 

  • V. Srinivasan, V.K. Pamula, M.G. Pollack, R.B. Fair, in IEEE 16th Annual International Conference on Micro Electro Mechanical Systems (2003), pp. 327–330

  • J.-H. Tsai, L. Lin, Sens. Actuator, A, 97–98, 665–671 (2002)

    Article  Google Scholar 

  • J.P. Van Doormaal, G.D. Raithby, Numer. Heat Transf. 7, 147–163 (1984)

    Article  MATH  Google Scholar 

  • H.J.J. Verheijen, M.W.J. Prins, Langmuir 15(20) 6616–6620 (1999)

    Google Scholar 

  • J. Xie, J. Shih, Q. Lin, B. Yang, Y.C. Tai, Lab Chip 4, 495–501 (2004)

    Article  Google Scholar 

  • D.L. Youngs, in Numerical Methods for Fluid Dynamics, ed. by K.W. Morton, M.J. Baines (Academic, New York, 1982), pp. 273–285.

  • H. Yu, E.S. Kim, in IEEE International Conference on MEMS, Las Vegas (IEEE, Los Alamitos, CA, 2002), pp. 125–128

  • J. Zeng, T. Korsmeyer, Lab Chip 4, 265–277 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Council (NSC 94-2215-E-006-051) of Taiwan. The authors would like to thank National Center for High-Performance Computing, Tainan, Taiwan, for the support of CFD-ACE+. Additionally, the authors would like to thank the Center for Micro/Nano Science and Technology, and National Nano Device Laboratories, Tainan, Taiwan, for equipment access and technical support. Furthermore, this work made use of Shared Facilities supported by the Program of Top 100 Universities Advancement, Ministry of Education, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling-Sheng Jang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, LS., Lin, GH., Lin, YL. et al. Simulation and experimentation of a microfluidic device based on electrowetting on dielectric. Biomed Microdevices 9, 777–786 (2007). https://doi.org/10.1007/s10544-007-9089-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-007-9089-8

Keywords

Navigation