Skip to main content
Log in

A finite element method for a biharmonic equation based on gradient recovery operators

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

A new non-conforming finite element method is proposed for the approximation of the biharmonic equation with clamped boundary condition. The new formulation is based on a gradient recovery operator. Optimal a priori error estimates are proved for the proposed approach. The approach is also extended to cover a singularly perturbed problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ainsworth, M., Oden, J.T.: A posteriori error estimation in finite element analysis. Wiley-Interscience, New York (2000)

    Book  MATH  Google Scholar 

  2. Babuška, I., Osborn, J., Pitkäranta, J.: Analysis of mixed methods using mesh dependent norms. Math. Comput. 35, 1039–1062 (1980)

    Article  MATH  Google Scholar 

  3. Bank, R., Xu, J.: Asymptotically exact a posteriori error estimators, part I: grids with superconvergence. SIAM J. Numer. Anal. 41, 2294–2312 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bank, R., Xu, J.: Asymptotically exact a posteriori error estimators, part II: general unstructured grids. SIAM J. Numer. Anal. 41, 2313–2332 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Braess, D.: Finite elements: theory, fast solver, and applications in solid mechanics, 2nd edn. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  6. Brandts, J.: Gradient superconvergence on uniform simplicial partitions of polytopes. IMA Journal of Numerical Analysis 23, 489–505 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. Springer, New York (1994)

    Book  MATH  Google Scholar 

  8. Brenner, S.C., Sung, L.: Linear finite element methods for planar linear elasticity. Math. Comput. 59, 321–338 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Brenner, S.C., Sung, L.-Y.: \(C^0\) interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput. 22–23, 83–118 (2005)

  10. Chen, J., Wang, D.: Three-dimensional finite element superconvergent gradient recovery on par6 patterns. Numerical Mathematics: Theory, Methods and Applications 3, 178–194 (2010)

    MATH  MathSciNet  Google Scholar 

  11. Chen, L.: Superconvergence of tetrahedral linear finite elements. Int. J. Numer. Anal. Model. 3, 273–282 (2006)

    MATH  MathSciNet  Google Scholar 

  12. Cheng, X., Han, W., Huang, H.: Some mixed finite element methods for biharmonic equation. J. Comput. Appl. Math. 126, 91–109 (2000)

    Google Scholar 

  13. Ciarlet, P.G.: The finite element method for elliptic problems. North Holland, Amsterdam (1978)

    MATH  Google Scholar 

  14. Ciarlet, P.G., Raviart, P.-A.: Symposium on mathematical aspects of finite elements in partial differential equations. In: De Boor, C. (ed.) A mixed finite element method for the biharmonic equation, pp. 125–143. Academic Press, New York (1974)

    Google Scholar 

  15. Engel, G., Garikipati, K., Hughes, T.J.R., Larson, M.G., Mazzei, L., Taylor, R.L.: Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. Comput. Methods Appl. Mech. Eng. 191, 3669–3750 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Falk, R., Osborn, J.E.: Error estimates for mixed methods. RAIRO Anal. Numér. 14, 249–277 (1980)

    MATH  MathSciNet  Google Scholar 

  17. Falk, R.S.: Approximation of the biharmonic equation by a mixed finite element method. SIAM J. Numer. Anal. 15, 556–567 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  18. Girault, V., Raviart, P.-A.: Finite element methods for Navier–Stokes equations. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  19. Han, H., Wu, X.: A new mixed finite element formulation and the MAC method for the Stokes equations. SIAM J. Numer. Anal. 35, 560–571 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Johnson, C., Pitkäranta, J.: Some mixed finite element methods related to reduced integration. Math. Comput. 38, 375–400 (1982)

    Article  MATH  Google Scholar 

  21. Kim, C., Lazarov, R.D., Pasciak, J.E., Vassilevski, P.S.: Multiplier spaces for the mortar finite element method in three dimensions. SIAM J. Numer. Anal. 39, 519–538 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lakhany, A.M., Marek, I., Whiteman, J.R.: Superconvergence results on mildly structured triangulations. Comput. Methods Appl. Mech. Eng. 189, 1–75 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lamichhane, B.P.: Higher order mortar finite elements with dual Lagrange multiplier spaces and applications. PhD thesis, Universität Stuttgart (2006)

  24. Lamichhane, B.P.: A gradient recovery operator based on an oblique projection. Electron. Trans. Numer. Anal. 37, 166–172 (2010)

    MATH  MathSciNet  Google Scholar 

  25. Lamichhane, B.P.: A stabilized mixed finite element method for the biharmonic equation based on biorthogonal systems. J. Comput. Appl. Math. 235, 5188–5197 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  26. Lamichhane, B.P.: Two simple finite element methods for Reissner–Mindlin plates with clamped boundary condition. Appl. Numer. Math. 72, 91–98 (2013)

    Article  MathSciNet  Google Scholar 

  27. Lamichhane, B.P., McNeily, A.: Approximation properties of a gradient recovery operator using a biorthogonal system. http://arxiv.org/abs/1305.0089, 2013. (Submitted)

  28. Li, B., Zhang, Z.: Analysis of a class of superconvergence patch recovery techniques for linear and bilinear finite elements. Numer. Methods Partial Differ. Equ. 15, 151–167 (1999)

    Article  MATH  Google Scholar 

  29. Lysaker, M., Lundervold, A., Tai, X.C.: Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Trans. Image Process. 12, 1579–1590 (2003)

    Article  MATH  Google Scholar 

  30. Nilssen, T.K., Tai, X.-C., Winther, R.: A robust nonconforming \({H}^2\)-element. Math. Comput. 70, 489–505 (2000)

    Article  MathSciNet  Google Scholar 

  31. Wahba, G.: Spline models for observational data. In: Series in applied mathematic, 1st edn. SIAM, Philadelphia (1990)

  32. Wells, G.N., Kuhl, E., Garikipati, K.: A discontinuous Galerkin method for the Cahn–Hilliard equation. J. Comput. Phys. 218, 860–877 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  33. Xu, J., Zhang, Z.: Analysis of recovery type a posteriori error estimators for mildly structured grids. Math. Comput. 73, 1139–1152 (2004)

    Article  MATH  Google Scholar 

  34. Zhang, Z.: Ultraconvergence of the patch recovery technique. Math. Comput. 65, 1431–1437 (1996)

    Article  MATH  Google Scholar 

  35. Zhang, Z.: Ultraconvergence of the patch recovery technique II. Math. Comput. 69, 141–158 (2000)

    Article  MATH  Google Scholar 

  36. Zhang, Z., Zhu, J.Z.: Analysis of the superconvergent patch recovery technique and a posteriori error estimator in the finite element method (II). Comput. Methods Appl. Mech. Eng. 163, 159–170 (1998)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

I am grateful to the anonymous referees for their valuable suggestions to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bishnu P. Lamichhane.

Additional information

Communicated by Ragnar Winther.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamichhane, B.P. A finite element method for a biharmonic equation based on gradient recovery operators. Bit Numer Math 54, 469–484 (2014). https://doi.org/10.1007/s10543-013-0462-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-013-0462-0

Keywords

Mathematics subject classification (2010)

Navigation