Skip to main content
Log in

Barycentric-Remez algorithms for best polynomial approximation in the chebfun system

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

The Remez algorithm, 75 years old, is a famous method for computing minimax polynomial approximations. Most implementations of this algorithm date to an era when tractable degrees were in the dozens, whereas today, degrees of hundreds or thousands are not a problem. We present a 21st-century update of the Remez ideas in the context of the chebfun software system, which carries out numerical computing with functions rather than numbers. A crucial feature of the new method is its use of chebfun global rootfinding to locate extrema at each iterative step, based on a recursive algorithm combining ideas of Specht, Good, Boyd, and Battles. Another important feature is the use of the barycentric interpolation formula to represent the trial polynomials, which points the way to generalizations for rational approximations. We comment on available software for minimax approximation and its scientific context, arguing that its greatest importance these days is probably for fundamental studies rather than applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almacany, M., Dunham, C., Williams, J.: Discrete Chebyshev approximation by interpolating rationals. IMA J. Numer. Anal. 4, 467–477 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barrodale, I., Phillips, C.: Solution of an overdetermined system of linear equations in the Chebyshev norm. ACM Trans. Math. Softw. 1, 264–270 (1975)

    Article  MATH  Google Scholar 

  3. Battles, Z.: Numerical linear algebra for continuous functions. PhD thesis, University of Oxford (2005)

  4. Battles, Z., Trefethen, L.N.: An extension of MATLAB to continuous functions and operators. SIAM J. Sci. Comput. 25(5), 1743–1770 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bernstein, S.: Sur la meilleure approximation de |x| par des polynomes de degrés donnés. Acta Math. 37, 1–57 (1914)

    Article  MathSciNet  Google Scholar 

  6. Berrut, J.P., Trefethen, L.N.: Barycentric Lagrange interpolation. SIAM Rev. 46, 501–517 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Boothroyd, J.: Algorithm 318: Chebyschev curve-fit. Commun. ACM 10(12), 801–803 (1967)

    Article  Google Scholar 

  8. Borel, E.: Leçons sur les fonctions de variables réelles. Gauthier-Villars, Paris (1905)

    MATH  Google Scholar 

  9. Boyd, J.A.: Computing zeros on a real interval through Chebyshev expansion and polynomial rootfinding. SIAM J. Numer. Anal. 40(5), 1666–1682 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Brutman, L.: Lebesgue functions for polynomial interpolation—a survey. Ann. Numer. Math. 4, 111–128 (1997)

    MATH  MathSciNet  Google Scholar 

  11. Cheney, E.W.: Introduction to Approximation Theory. McGraw-Hill, New York (1966)

    MATH  Google Scholar 

  12. Cody, W.J.: The FUNPACK package of special function subroutines. ACM Trans. Math. Softw. 1(1), 13–25 (1975)

    Article  MATH  Google Scholar 

  13. Cody, W.J.: Algorithm 715: SPECFUN—a portable FORTRAN package of special function routines and test drivers. ACM Trans. Math. Softw. 19(1), 22–30 (1993)

    Article  MATH  Google Scholar 

  14. Curtis, P.C., Frank, W.L.: An algorithm for the determination of the polynomial of best minimax approximation to a function defined on a finite point set. J. ACM 6, 395–404 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  15. Davis, P.J.: Interpolation and Approximation. Dover, New York (1975)

    MATH  Google Scholar 

  16. de Boor, C., Rice, J.R.: Extremal polynomials with application to Richardson iteration for indefinite linear systems. SIAM J. Sci. Stat. Comput. 3, 47–57 (1982)

    Article  MATH  Google Scholar 

  17. de la Vallée Poussin, C.J.: Sur les polynomes d’approximation et la représentation approchée d’un angle. Acad. R. Belg., Bull. Cl. Sci. 12 (1910)

  18. Dunham, C.B.: Choice of basis for Chebyshev approximation. ACM Trans. Math. Softw. 8(1), 21–25 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  19. Golub, G.H., Smith, L.B.: Algorithm 414: Chebyshev approximation of continuous functions by a Chebyshev system of functions. Commun. ACM 14(11), 737–746 (1971)

    Article  Google Scholar 

  20. Good, I.J.: The colleague matrix, a Chebyshev analogue of the companion matrix. Q. J. Math. 12, 61–68 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  21. Gutknecht, M.H., Trefethen, L.N.: Real polynomial Chebyshev approximation by the Carathéodory-Fejér method. SIAM J. Numer. Anal. 19, 358–371 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  22. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. SIAM, Philadelphia (2002)

    MATH  Google Scholar 

  23. Higham, N.J.: The numerical stability of barycentric Lagrange interpolation. IMA J. Numer. Anal. 24, 547–556 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kaufman, Jr., E.H., Leeming, D.J., Taylor, G.D.: Uniform rational approximation by differential correction and Remes-differential correction. Int. J. Numer. Methods Eng. 17, 1273–1278 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  25. Le Bailly, B., Thiran, J.P.: Computing complex polynomial Chebyshev approximants on the unit circle by the real Remez algorithm. SIAM J. Numer. Anal. 36, 1858–1877 (1999)

    Google Scholar 

  26. Lorentz, G.G.: Approximation of Functions. Holt, Rinehart and Winston (1966)

  27. MATLAB: User’s Guide. The MathWorks Inc., Natick, Massachusetts

  28. McClellan, J.H., Parks, T.W.: A personal history of the Parks-McClellan algorithm. IEEE Signal Process. Mag. 22, 82–86 (2005)

    Article  Google Scholar 

  29. McClellan, J.H., Parks, T.W., Rabiner, L.R.: A computer program for designing optimum FIR linear phase digital filters. IEEE Trans. Audio Electroacoust. 21, 506–526 (1973)

    Article  Google Scholar 

  30. Meinardus, G.: Approximation of Functions: Theory and Numerical Methods. Springer, Heidelberg (1967)

    MATH  Google Scholar 

  31. Mhaskar, H.N., Pai, D.V.: Fundamentals of Approximation Theory. Narosa Publishing House, New Delhi (2000)

    MATH  Google Scholar 

  32. Murnaghan, F.D., Wrench, J.W.: J.: The determination of the Chebyshev approximating polynomial for a differentiable function. Math. Tables Aids Comput. 13, 185–193 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  33. NAG: Library, Manual. The Numerical Algorithms Group, Ltd., Oxford, UK

  34. Numerical Libraries, I.M.S.L.: Technical Documentation. Visual Numerics Inc., Houston

  35. Pachón, R., Platte, R., Trefethen, L.N.: Piecewise smooth chebfuns. IMA J. Numer. Anal. (to appear)

  36. Parks, T.W., McClellan, J.H.: Chebyshev approximation for nonrecursive digital filters with linear phase. IEEE Trans. Circuit Theory 19, 189–194 (1972)

    Article  Google Scholar 

  37. Powell, M.J.D.: Approximation Theory and Methods. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  38. Rabinowitz, P.: Applications of linear programming to numerical analysis. SIAM Rev. 10, 121–159 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  39. Remes, E.: Sur le calcul effectif des polynomes d’approximation de Tchebychef. C. R. Acad. Sci. 199, 337–340 (1934)

    Google Scholar 

  40. Remes, E.: Sur un procédé convergent d’approximations successives pour déterminer les polynomes d’approximation. C. R. Acad. Sci. 198, 2063–2065 (1934)

    Google Scholar 

  41. Remes, E.: Sur la détermination des polynomes d’approximation de degré donnée. Commun. Soc. Math. Kharkov 10 (1934)

  42. Rice, J.R.: The Approximation of Functions, vol. 1. Addison-Wesley, Reading (1964)

    MATH  Google Scholar 

  43. Sauer, F.W.: Algorithm 604: A FORTRAN program for the calculation of an extremal polynomial. ACM Trans. Math. Softw. 9(3), 381–383 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  44. Schmitt, H.: Algorithm 409, discrete Chebychev curve fit. Commun. ACM 14, 355–356 (1971)

    Article  Google Scholar 

  45. Simpson, J.C.: Fortran translation of algorithm 409, Discrete Chebychev curve fit. ACM Trans. Math. Softw. 2, 95–97 (1976)

    Article  MATH  Google Scholar 

  46. Specht, W.: Die Lage der Nullstellen eines Polynoms, IV. Math. Nachr. 21, 201–222 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  47. Steffens, K.G.: The History of Approximation Theory: From Euler to Bernstein. Birkhäuser, Boston (2006)

    Google Scholar 

  48. Stiefel, E.L.: Numerical methods of Tchebycheff approximation. In: Langer, R. (ed.) On Numerical Approximation, pp. 217–232. University of Wisconsin Press, Madison (1959)

    Google Scholar 

  49. Taylor, R., Totik, V.: Lebesgue constants for Leja points. IMA J. Numer. Anal. (to appear)

  50. Trefethen, L.N.: Square blocks and equioscillation in the Padé, Walsh, and CF tables. In: Graves-Morris, P., Saff, E., Varga, R. (eds.) Rational Approximation and Interpolation. Lect. Notes in Math., vol. 1105. Springer, Berlin (1984)

    Chapter  Google Scholar 

  51. Trefethen, L.N.: Spectral Methods in MATLAB. SIAM, Philadelphia (2000)

    MATH  Google Scholar 

  52. Varga, R.S., Carpenter, A.J.: On the Bernstein conjecture in approximation theory. Constr. Approx. 1, 333–348 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  53. Veidinger, L.: On the numerical determination of the best approximation in the Chebyshev sense. Numer. Math. 2, 99–105 (1960)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Pachón.

Additional information

Communicated by Hans Petter Langtangen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pachón, R., Trefethen, L.N. Barycentric-Remez algorithms for best polynomial approximation in the chebfun system. Bit Numer Math 49, 721–741 (2009). https://doi.org/10.1007/s10543-009-0240-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-009-0240-1

Keywords

Mathematics Subject Classification (2000)

Navigation