Skip to main content
Log in

The role of dehydrins in plant response to cold

  • Review
  • Published:
Biologia Plantarum

Abstract

Dehydrins present a distinct biochemical group of late embryogenesis abundant (LEA) proteins characterised by the presence of a lysine-rich amino acid motif, the K-segment. They are highly hydrophilic, soluble upon boiling, and rich in glycine and polar amino acids. It is proposed that they can act as emulsifiers or chaperones in the cells, i.e., they protect proteins and membranes against unfavourable structural changes caused by dehydration. Cold usually precedes freezing in nature and induces many physiological and biochemical changes in the cells of freezing-tolerant plant species (cold-acclimation) that enable them to survive unfavourable conditions. It is demonstrated that the induction of dehydrin expression and their accumulation is an important part of this process in many dicotyledons (both herbaceous and woody species), and also in winter cultivars of cereals, especially wheat and barley. Some mechanisms which are proposed to be involved in regulation of dehydrin expression are discussed, i.e., endogenous content of abscisic acid, homologues of Arabidopsis C-repeat binding factor (CBF) transcriptional activators, the activity of vernalization genes and photoperiodic signals. Finally, we outline some new approaches emerging for the solution of the complex mechanisms involved in plant cold-acclimation, especially the methods of functional genomics that enable to observe simultaneously changes in the activity of many genes and proteins in a single sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABA:

abscisic acid

ABRE:

ABA-responsive element

bZIP:

basic-domain leucine zipper

CaMV:

cauliflower mosaic virus

CAT:

catalase

CBF:

C-repeat-binding factor

Cor:

cold-regulated

CRT:

C-repeat

Dhn:

dehydrin

DRE:

dehydration-responsive element

ELIPs:

early light-inducible proteins

Erd:

early response to drought

EST:

expressed sequence tag

Fr gene:

frost resistance gene

FT:

frost tolerance

GUS:

β-glucuronidase

LEA:

late embryogenesis abundant

LD:

long day

LDH:

lactate dehydrogenase

LT:

low temperature

LT50 :

lethal temperature when 50 % samples die

Lti:

low temperature-induced

LTRE:

low temperature-responsive element

Mr :

relative molecular mass

NLS:

nuclear localisation sequence

PD50 :

50 % protein denaturation

pI:

isoelectric point

Ppd:

photoperiod

QTL:

quantitative trait loci

Rab:

response to ABA

RT-PCR:

reverse transcriptase polymerase chain reaction

SD:

short day

SDS-PAGE:

sodium dodecyl sulphate polyacrylamide gel electrophoresis

UV CD:

ultra-violet circular dichroism

Vrn:

vernalization

Wcor:

wheat cold-regulated

Wcs:

wheat cold-specific

Wdhn:

wheat dehydrin

WT:

wild type

2DE:

two dimensional electrophoresis

2D-DIGE:

two dimensional difference gel electrophoresis

References

  • Allagulova, C.R., Gimalov, F.R., Shakirova, F.M., Vakhitov, V.A.: The plant dehydrins: structure and putative functions.-Biochemistry 68: 945–951, 2003.

    PubMed  CAS  Google Scholar 

  • Alsheikh, M.K., Heyen, B.J., Randall, S.K.: Ion binding properties of the dehydrin ERD14 are dependent upon phosphorylation.-J. biol. Chem. 278: 40882–40889, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Alsheikh, M.K., Svensson, J.T., Randall, S.K.: Phosphorylation regulated ion-binding is a property shared by the acidic subclass dehydrins.-Plant Cell Environ. 28: 1114–1122, 2005.

    Article  CAS  Google Scholar 

  • Amme, S., Matros, A., Schlesier, B., Mock, H.-P.: Proteome analysis of cold stress response in Arabidopsis thaliana using DIGE-technology.-J. exp. Bot. 57: 1537–1546, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Arora, R., Wisniewski, M.E.: Cold acclimation in genetically related (sibling) deciduous and evergreen peach (Prunus persica [L.] Batsch). II. A 60-kilodalton bark protein in cold-acclimated tissues of peach is heat stable and related to the dehydrin family of proteins.-Plant Physiol. 105: 95–101, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Artlip, T.S., Callahan, A.M., Basett, C.L., Wisniewski, M.E.: Seasonal expression of a dehydrin gene in sibling deciduous and evergreen genotypes of peach (Prunus persica [L.] Batsch.).-Plant mol. Biol. 33: 61–70, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Bassett, C.L., Wisniewski, M.E., Artlip, T.S., Norelli, J.L., Renaut, J., Farell, R.E., Jr.: Global analysis of genes regulated by low temperature and photoperiod in peach bark.-J. amer. Soc. hort. Sci. 131: 551–563, 2006.

    CAS  Google Scholar 

  • Baudo, M.M., Meza-Zepeda, L.A., Palva, E.T., Heino, P.: Induction of homologous low temperature and ABA-responsive genes in frost resistant (Solanum commersonii) and frost sensitive (Solanum tuberosum cv. Bintje) potato species.-Plant mol. Biol. 30: 331–336, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Bhattarai, T., Fettig, S.: Isolation and characterization of a dehydrin gene from Cicer pinnatifidum, a drought-resistant wild relative of chickpea.-Physiol. Plant. 123: 452–458, 2005.

    Article  CAS  Google Scholar 

  • Borovskii, G.B., Stupnikova, I.V., Antipina, A.I., Voinikov, V.K.: Accumulation of dehydrins and ABA-inducible proteins in wheat seedlings during low-temperature acclimation.-Russ. J. Plant Physiol. 49: 229–234, 2002.

    Article  CAS  Google Scholar 

  • Bravo, L.A., Close, T.J., Corcuera, L.J., Guy, C.L.: Characterization of an 80-kDa dehydrin-like protein in barley responsive to cold acclimation.-Physiol. Plant. 106: 177–183, 1999.

    Article  CAS  Google Scholar 

  • Bravo, L.A., Gallardo, J., Navarrete, A., Olave, N., Martínez, J., Alberdi, M., Close, T.J., Corcuera, L.J.: Cryoprotective activity of a cold-induced dehydrin purified from barley.-Physiol. Plant. 118: 262–269, 2003.

    Article  CAS  Google Scholar 

  • Buchanan, C.D., Lim, S.Y., Salzman, R.A., Kagiampakis, L., Morishige, D.T., Weers, B.D., Klein, R.R., Pratt, L.H., Cordonnier-Pratt, M.M., Klein, P.E., Mullet, J.E.: Sorghum bicolor’s transcriptome response to dehydration, high salinity and ABA.-Plant mol. Biol. 58: 699–720, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Cai, Q., Moore, G.A., Guy, C.L.: An unusual group 2 LEA gene family in citrus responsive to low temperature.-Plant mol. Biol. 29: 11–23, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Campbell, S.A., Close, T.J.: Dehydrins: genes, proteins, and associations with phenotypic traits.-New Phytol. 137: 61–74, 1997.

    Article  CAS  Google Scholar 

  • Chauvin, L.-P., Houde, M., Fowler, D.B.: Nucleotide sequence of a new member of the freezing tolerance-associated protein family in wheat.-Plant Physiol. 105: 1017–1018, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Choi, D.-W., Rodriguez, E.M., Close, T.J.: Barley Cbf3 gene identification, expression pattern, and map location.-Plant Physiol. 129: 1781–1787, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Choi, D.W., Werner-Fraczek, J., Fenton, R.D., Koag, M.C., Ahmadian, S., Malatrasi, M., Chin, A., Bravo, L.C., Close, T.J.: Genetic map locations and expression of the barley dehydrin multigene family.-Barley Genet. 8: 264–265, 2000.

    Google Scholar 

  • Choi, D.W., Zhu, B., Close, T.J.: The barley (Hordeum vulgare L.) dehydrin multigene family: sequences, allele types, chromosome assignments, and expression characteristics of 11 Dhn genes of cv. Dicktoo.-Theor. appl. Genet. 98: 1234–1247, 1999.

    Article  CAS  Google Scholar 

  • Close, T.J.: Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins.-Physiol. Plant. 97: 795–803, 1996.

    Article  CAS  Google Scholar 

  • Close, T.J.: Dehydrins: a commonalty in the response of plants to dehydration and low temperature.-Physiol. Plant. 100: 291–296, 1997.

    Article  CAS  Google Scholar 

  • Close, T.J.: The barley microarray. A community vision and application to abiotic stress.-Czech J. Genet. Plant Breed. 41: 144–152, 2005.

    Google Scholar 

  • Close, T.J., Fenton, R.D., Moonan, F.: A view of plant dehydrins using antibodies specific to the carboxy terminal peptide.-Plant mol. Biol. 23: 279–286, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Close, T.J., Meyer, N.C., Radik, J.: Nucleotide sequence of a gene encoding a 58.5-kilodalton barley dehydrin that lacks a serine tract.-Plant Gene Register. Plant Physiol. 107: 289–290, 1995.

    CAS  Google Scholar 

  • Danyluk, J., Houde, M., Rassart, E., Sarhan, F.: Differential expression of a gene encoding an acidic dehydrin in chilling sensitive and freezing tolerant graminae species.-FEBS Lett. 344: 20–24, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Danyluk, J., Kane, N.A., Breton, G., Limin, A.E., Fowler, D.B., Sarhan, F.: TaVRT-1, a putative transcription factor associated with vegetative to reproductive transition in cereals.-Plant Physiol. 132: 1849–1860, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Danyluk, J., Perron, A., Houde, M., Limin, A., Fowler, B., Benhamou, N., Sarhan, F.: Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat.-Plant Cell 10: 623–638, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Deng, Z.X., Pang, Y.Z., Kong, W.W., Chen, Z.H., Wang, X.L., Liu, X.J., Pi, Y., Sun, X.F.M., Tang, K.X.: A novel ABA-dependent dehydrin ERD10 gene from Brassica napus.-DNA sequence 16: 28–35, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Dhanaraj, A.L., Slovin, J.P., Rowland, L.J.: Isolation of a cDNA clone and characterization of expression of the highly abundant, cold acclimation-associated 14 kDa dehydrin of blueberry.-Plant Sci. 168: 949–957, 2005.

    Article  CAS  Google Scholar 

  • Egerton-Warburton, L.M., Balsamo, R.A., Close, T.J.: Temporal accumulation and ultrastructural localization of dehydrins in Zea mays.-Physiol. Plant. 101: 545–555, 1997.

    Article  CAS  Google Scholar 

  • Fan, Z.Q., Wang, X.R.: Isolation and characterization of a novel dehydrin gene from Capsella bursa-pastoris.-Mol. Biol. 40: 52–60, 2006.

    Article  CAS  Google Scholar 

  • Fowler, D.B., Breton, G., Limin, A.E., Mahfoozi, S., Sarhan, F.: Photoperiod and temperature interactions regulate low-temperature-induced gene expression in barley.-Plant Physiol. 127: 1676–1681, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Fowler, S., Thomashow, M.F.: Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway.-Plant Cell 14: 1675–1690, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Fu, P., Wilen, R.W., Wu, G.-H., Robertson, A.J., Gusta, L.V.: Dehydrin gene expression and leaf water potential differs between spring and winter cereals during cold acclimation.-J. Plant Physiol. 156: 394–400, 2000.

    CAS  Google Scholar 

  • Gilmour, S.J., Artus, N.N., Thomashow, M.T.: cDNA sequence analysis and expression of two cold-regulated genes of Arabidopsis thaliana.-Plant mol. Biol. 18: 13–21, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Gilmour, S.J., Fowler, S.G., Thomashow, M.F.: Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities.-Plant mol. Biol. 54: 767–781, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Gilmour, S.J., Sebolt, A.M., Salazar, M.P., Everard, J.D., Thomashow, M.F.: Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation.-Plant Physiol. 124: 1854–1865, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Gulick, P.J., Drouin, S., Yu, Z., Danyluk, J., Poisson, G., Monroy, A.F., Sarhan, F.: Transcriptome comparison of winter and spring wheat responding to low temperature.-Genome 48: 913–923, 2005.

    PubMed  CAS  Google Scholar 

  • Guo, W., Ward, R.W., Thomashow, M.F.: Characterization of a cold-regulated wheat gene related to Arabidopsis Cor47.-Plant Physiol. 100: 915–922, 1992.

    PubMed  CAS  Google Scholar 

  • Guy, C.L.: Cold acclimation and freezing stress tolerance: role of protein metabolism.-Annu. Rev. Plant Physiol. Plant mol. Biol. 41: 187–223, 1990.

    CAS  Google Scholar 

  • Hannah, M.A., Heyer, A.G., Hincha, D.K.: A global survey of gene regulation during cold acclimation in Arabidopsis thaliana.-PloS. Genet. 1: e26, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Hara, M., Fujinaga, M., Kuboi, T.: Radical scavenging activity and oxidative modification of citrus dehydrin.-Plant Physiol. Biochem. 42: 657–662, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Hara, M., Fujinaga, M., Kuboi, T.: Metal binding by citrus dehydrin with histidine-rich domains.-J. exp. Bot. 56: 2695–2703, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Hara, M., Terashima, S., Fukaya, T., Kuboi, T.: Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco.-Planta 203: 290–298, 2003.

    Google Scholar 

  • Hara, M., Terashima, S., Kuboi, T.: Characterization and cryoprotective activity of cold-responsive dehydrin from Citrus unshiu.-J. Plant Physiol. 158: 1333–1339, 2001.

    Article  CAS  Google Scholar 

  • Hara, M., Wakasugi, Y., Jokma, Y., Yano, M., Ogawa, K., Kuboi, T.: cDNA sequence and expression of a cold-responsive gene in Citrus unshiu.-Biosci. Biotechnol. Biochem. 63: 433–437, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Houde, M., Dallaire, S., N’Dong, D., Sarhan, F.: Over-expression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves.-Plant biotechnol. J. 2: 381–387, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Houde, M., Daniel, C., Lachapelle, M., Allard, F., Laliberté, S., Sarhan, F.: Immunolocalization of freezing-tolerance associated proteins in the cytoplasm and nucleoplasm of wheat crown tissues.-Plant J. 8: 583–593, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Houde, M., Danyluk, J., Laliberte, J.-F., Rassart, E., Dhindsa, R.S., Sarhan, F.: Cloning, characterization, and expression of a cDNA encoding a 50 kilodalton protein specifically induced by cold acclimation in wheat.-Plant Physiol. 99: 1381–1387, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Ingram, J., Bartels, D.: The molecular basis of dehydration tolerance in plants.-Annu. Rev. Plant Physiol. Plant mol. Biol. 47: 377–403, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Ismail, A.M., Hall, A.E., Close, T.J.: Purification and partial characterization of a dehydrin involved in chilling tolerance during seedling emergence of cowpea.-Plant Physiol. 120: 237–244, 1999a.

    Article  PubMed  CAS  Google Scholar 

  • Ismail, A.M., Hall, A.E., Close, T.J.: Allelic variation of a dehydrin gene cosegregates with chilling tolerance during seedling emergence.-Proc. nat. Acad. Sci. USA 96: 13566–13570, 1999b.

    Article  PubMed  CAS  Google Scholar 

  • Israelachvili, J., Wennerström, H.: Role of hydration and water structure in biological and colloidal interactions.-Nature 379: 219–225, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki, T., Kiyosue, T., Yamaguchi-Shinozaki, K., Shinozaki, K.: The dehydration-inducible Rd17 (Cor47) gene and its promoter region in Arabidopsis thaliana (Accession No. AB004872).-Plant Gene Register. Plant Physiol. 115: 1287–1289, 1997.

    Google Scholar 

  • Jaglo-Ottosen, K.R., Gilmour, S.J., Zarka, D.G., Schabenberger, O., Thomashow, M.F.: Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance.-Science 280: 104–106, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Jarvis, S.B., Taylor, M.A., MacLeod, M.R., Davies, H.V.: Cloning and characterisation of the cDNA clones of three genes that are differentially expressed during dormancy-breakage in the seeds of Douglas fir (Pseudotsuga menziesii).-J. Plant Physiol. 147: 559–566, 1996.

    CAS  Google Scholar 

  • Kalberer, S.R., Wisniewski, M., Arora, R.: Deacclimation and reacclimation of cold-hardy plants: current understanding and emerging concepts.-Plant Sci. 171: 3–16, 2006.

    Article  CAS  Google Scholar 

  • Kirch, H.-H., Van Berkel, J., Glaczinski, H., Salamini, F., Gebhardt, C.: Structural organization, expression and promoter activity of a cold-stress-inducible gene of potato (Solanum tuberosum L.).-Plant mol. Biol. 33: 897–909, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Kiyosue, T., Yamaguchi-Shinozaki, K., Shinozaki, K.: Characterization of two cDNAs (ERD10 and ERD14) corresponding to genes that respond rapidly to dehydration stress in Arabidopsis thaliana.-Plant Cell Physiol. 35: 225–231, 1994.

    PubMed  CAS  Google Scholar 

  • Koag, M.-C., Fenton, R., Wilkens, S., Close, T.J.: The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity.-Plant Physiol. 131: 309–316, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, F., Takumi, S., Kume, S., Ishibashi, M., Ohno, R., Murai, K., Nakamura, C.: Regulation by Vrn-1/Fr-1 chromosomal intervals of CBF-mediated Cor/Lea gene expression and freezing tolerance in common wheat.-J. exp. Bot. 56: 887–895, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Kontunen-Soppela, S., Taulavuori, K., Taulavuori, E., Lähdesmäki, P., Laine, K.: Soluble proteins and dehydrins in nitrogen-fertilized Scots pine seedlings during deacclimation and the onset of growth.-Physiol. Plant. 109: 404–409, 2000.

    Article  CAS  Google Scholar 

  • Kumar, A., Bhatla, S.C.: Polypeptide markers for low temperature stress during seed germination in sunflower.-Biol. Plant. 50: 81–86, 2006.

    Article  CAS  Google Scholar 

  • Lang, V., Mantyla, E., Welin, B., Sundberg, B., Palva, E.T.: Alterations in water status, endogenous abscisic acid content, and expression of rab18 gene during the development of freezing tolerance in Arabidopsis thaliana.-Plant Physiol. 104: 1341–1349, 1994.

    PubMed  Google Scholar 

  • Lang, V., Palva, E.T.: The expression of a Rab-related gene, Rab18, is induced by abscisic acid during the cold-acclimation process of Arabidopsis thaliana (L.) Heynh.-Plant mol. Biol. 20: 951–962, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S.C., Lee, M.Y., Kim, S.J., Jun, S.H., An, G., Kim, S.R.: Characterization of an abiotic stress-inducible dehydrin gene, OsDhn1, in rice (Oryza sativa L.).-Mol. Cells 19: 212–218, 2005.

    PubMed  CAS  Google Scholar 

  • Levi, A., Panta, G.R., Parmentier, C.M., Muthalif, M.M., Arora, R., Shanker, S., Rowland, L.J.: Complementary DNA cloning, sequencing and expression of an unusual dehydrin from blueberry floral buds.-Physiol. Plant. 107: 98–109, 1999.

    Article  CAS  Google Scholar 

  • Lim, C.C., Krebs, S.L., Arora, R.: A 25-kDa dehydrin associated with genotype-and age-dependent leaf freezing tolerance in Rhododendron: a genetic marker for cold hardiness?-Theor. appl. Genet. 99: 912–920, 1999.

    Article  CAS  Google Scholar 

  • Limin, A.E., Danyluk, J., Chauvin, L.-P., Fowler, D.B., Sarhan, F.: Chromosome mapping of low-temperature induced Wcs120 family genes and regulation of cold-tolerance expression in wheat.-Mol. gen. Genet. 253: 720–727, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Marian, C.O., Krebs, S.L., Arora, R.: Dehydrin variability among Rhododendron species: a 25-kDa dehydrin is conserved and associated with cold acclimation across diverse species.-New Phytol. 161: 773–780, 2003.

    Article  CAS  Google Scholar 

  • Maruyama, K., Sakuma, Y., Kasuga, M., Ito, Y., Seki, M., Goda, H., Shimada, Y., Yoshida, S., Shinozaki, K., Yamaguchi-Shinozaki, K.: Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems.-Plant J. 38: 982–993, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Monroy, A.F., Castonguay, Y., Laberge, S., Sarhan, F., Vezina, L.P., Dhindsa, R.S.: A new cold-induced alfalfa gene is associated with enhanced hardening at subzero temperature.-Plant Physiol. 102: 873–879, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Muthalif, M.M., Rowland, L.J.: Identification of dehydrin-like proteins responsive to chilling in floral buds of blueberry (Vaccinium section Cyanococcus).-Plant Physiol. 104: 1439–1447, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Neven, L.G., Haskell, D.W., Hofig, A., Li, Q.B., Guy, C.L.: Characterization of a spinach gene responsive to low temperature and water stress.-Plant mol. Biol. 21: 291–305, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Nylander, M., Svensson, J., Palva, E.T., Wellin, B.V.: Stress-induced accumulation and tissue-specific localisation of dehydrins in Arabidopsis thaliana.-Plant mol. Biol. 45: 263–279, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Ohno, R., Takumi, S., Nakamura, C.: Kinetics of transcript and protein accumulation of a low-molecular-weight wheat LEA D-11 dehydrin in response to low temperature.-J. Plant Physiol. 160: 193–200, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Parmentier-Line, C.M., Panta, G.R., Rowland, L.J.: Changes in dehydrin expression associated with cold, ABA and PEG treatments in blueberry cell cultures.-Plant Sci. 162: 273–282, 2002.

    Article  CAS  Google Scholar 

  • Porat, R., Pasentsis, K., Rozentzvieg, D., Gerasopoulos, D., Falara, V., Samach, A., Lurie, S., Kanellis, A.K.: Isolation of a dehydrin cDNA from orange and grapefruit citrus fruit that is specifically induced by the combination of heat followed by chilling temperatures.-Physiol. Plant. 120: 256–264, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Porat, R., Pavoncello, D., Lurie, S., McCollum, T.G.: Identification of a grapefruit cDNA belonging to a unique class of citrus dehydrins and characterization of its expression patterns under temperature stress conditions.-Physiol. Plant. 115: 598–603, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Prášil, I.T., Prášilová, P., Pánková, K.: Relationships among vernalization, shoot apex development and frost tolerance in wheat.-Ann. Bot. 94: 413–418, 2004.

    Article  PubMed  Google Scholar 

  • Prášil, I.T., Prášilová, P., Pánková, K.: The relationship between vernalization requirement and frost tolerance in substitution lines of wheat.-Biol. Plant. 49: 195–200, 2005.

    Article  Google Scholar 

  • Puhakainen, T., Hess, M.V., Makela, P., Svensson, J., Heino, P., Palva, E.T.: Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis.-Plant mol. Biol. 54: 743–753, 2004a.

    Article  PubMed  CAS  Google Scholar 

  • Puhakainen, T., Li, C., Malm, M.-B., Kangasjarvi, J., Heino, P., Palva, T.: Short-day potentiation of low temperature-induced gene expression of a C-repeat-binding factor-controlled gene during cold acclimation in silver birch.-Plant Physiol. 136: 4299–4307, 2004b.

    Article  PubMed  CAS  Google Scholar 

  • Quellet, F., Houde, M., Sarhan, F.: Purification, characterization and cDNA cloning of the 200 kDa protein induced by cold acclimation in wheat.-Plant Cell Physiol. 34: 59–65, 1993.

    Google Scholar 

  • Rampino, P., Pataleo, S., Gerardi, C., Mita, G., Perrotta, C.: Drought stress response in wheat: physiological and molecular analysis of resistant and sensitive genotypes.-Plant Cell Environ. 29: 2143–2152, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Renault, J., Hausman, J.-F., Wisniewski, M.E.: Proteomics and low-temperature studies: bridging the gap between gene expression and metabolism.-Physiol. Plant. 126: 97–109, 2006.

    Article  Google Scholar 

  • Renault, J., Hoffmann, L., Hausman, J.-F.: Biochemical and physiological mechanisms related to cold acclimation and enhanced freezing tolerance in poplar plantlets.-Physiol. Plant. 125: 82–94, 2005.

    Article  CAS  Google Scholar 

  • Richard, S., Morency, M.-J., Drevet, C., Jouanin, L., Seguin, A.: Isolation and characterization of a dehydrin gene from white spruce induced upon wounding, drought and cold stresses.-Plant mol. Biol. 43: 1–10, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Rinne, P.L.H., Kaikuranta, P.L.M., van der Plas, L.H.W., van der Schoot, C.: Dehydrins in cold-acclimated apices of birch (Betula pubescens Ehrh.): production, localization and potential role in rescuing enzyme function during dehydration.-Planta 209: 377–388, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez, E.M., Svensson, J.T., Malatrasi, M., Choi, D.-W., Close, TJ.: Barley Dhn13 encodes a KS-type dehydrin with constitutive and stress responsive expression.-Theor. appl. Genet. 110: 852–858, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Rorat, T., Grygorowicz, W.J., Irzykowski, W., Rey, P.: Expression of KS-type dehydrins is primarily regulated by factor related to organ type and leaf developmental stage during vegetative growth.-Planta 218: 878–885, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Rorat, T., Szabala, B.M., Grygorowicz, W.J., Wojtowicz, B., Yin, Z., Rey, P.: Expression of SK3-type dehydrin in transporting organs is associated with cold acclimation in Solanum species.-Planta 224: 205–221, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Rouse, D.T., Marotta, R., Parish, R.W.: Promoter and expression studies on an Arabidopsis thaliana dehydrin gene.-FEBS Lett. 381: 252–256, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Sakai, A., Larcher, W.: Frost Survival of Plants. Responses and Adaptation to Freezing Stress.-Springer-Verlag Berlin-Heidelberg-New York-London-Paris-Tokyo 1987.

    Google Scholar 

  • Sarhan, F., Danyluk, J.: Engineering cold-tolerant crops-throwing the master switch.-Trends Plant Sci. 3: 289–290, 1998.

    Article  Google Scholar 

  • Sarhan, F., Ouellet, F., Vazquez-Tello, A.: The wheat wcs120 gene family. A useful model to understand the molecular genetics of freezing tolerance in cereals.-Physiol. Plant. 101: 439–445, 1997.

    Article  CAS  Google Scholar 

  • Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., Kamiya, A., Nakajima, M., Enju, A., Sakurai, T., Satou, M., Akiyama, K., Taji, T., Yamaguchi-Shinozaki, K., Carninci, P., Kawai, J., Hayashizaki, Y., Shinozaki, K.: Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray.-Plant J. 31: 279–292, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Stupnikova, I.V., Borovskii, G.B., Antipina, A.I., Voinikov, V.K.: Polymorphism of thermostable proteins in soft wheat seedlings during low-temperature acclimation.-Russ. J. Plant Physiol. 48: 804–809, 2001.

    Article  CAS  Google Scholar 

  • Stupnikova, I.V., Borovskii, G.B., Dorofeev, N.V., Peshkova, A.A., Voinikov, V.K.: Accumulation and disappearance of dehydrins and sugars depending on freezing tolerance of winter wheat plants at different developmental phases.-J. therm. Biol. 27: 55–60, 2002.

    Article  CAS  Google Scholar 

  • Svensson, J., Ismail, A., Palva, E.T., Close, T.J.: Dehydrins.-In: Storey, K.B., Storey, J.M. (ed.): Sensing, Signalling and Cell Adaptation. Pp. 155–171. Elsevier Science, Amsterdam 2002.

    Chapter  Google Scholar 

  • Thomashow, M.F.: Plant cold acclimation: freezing tolerance genes and regulatory mechanisms.-Annu. Rev. Plant Physiol. Plant mol. Biol. 50: 571–599, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Van Zee, K., Chen, F.Q., Hayes, P.M., Close, TJ., Chen, T.H.H.: Cold-specific induction of a dehydrin gene family member in barley.-Plant Physiol. 108: 1233–1239, 1995.

    PubMed  Google Scholar 

  • Vazquez-Tello, A., Quellet, F., Sarhan, F.: Low temperature-stimulated phosphorylation regulates the binding of nuclear factor to the promoter of Wcs120, a cold-specific gene in wheat.-Mol. gen. Genet. 257: 157–166, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Velten, J., Oliver, M.J.: Tr288, a rehydrin with a dehydrin twist.-Plant mol. Biol. 45: 713–722, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Vítámvás, P., Saalbach, G., Prášil, I.T., Čapková, V., Opatrná, J., Jahoor, A.: WCS120 protein family and proteins soluble upon boiling in cold-acclimated winter wheat.-J. Plant Physiol., in press, 2007.

  • Wahid, A., Close, T.J.: Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves.-Biol. Plant. 51: 104–109, 2007.

    Article  CAS  Google Scholar 

  • Wei, H., Fu, Y., Arora, R.: Intron-flanking EST-PCR markers: from genetic marker development to gene structure analysis in Rhododendron.-Theor. appl. Genet. 111: 1347–1356, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Wellin, B.V., Olson, A., Nylander, M., Palva, E.T.: Characterization and differential expression of Dhn/Lea/Rab-like genes during cold acclimation and drought stress in Arabidopsis thaliana.-Plant mol. Biol. 26: 131–144, 1994.

    Article  Google Scholar 

  • Wellin, B.V., Olson, A., Palva, E.T.: Structure and organization of two closely-related low-temperature-induced Dhn/Lea/Rab-like genes in Arabidopsis thaliana (L.) Heynh.-Plant mol. Biol. 29: 391–395, 1995.

    Article  Google Scholar 

  • Welling, A., Moritz, T., Palva, E.T., Juntilla, O.: Independent activation of cold acclimation by low temperature and short photoperiod in hybrid aspen.-Plant Physiol. 129: 1633–1641, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Welling, A., Palva, T.: Molecular control of cold acclimation in trees.-Physiol. Plant. 127: 167–181, 2006.

    Article  CAS  Google Scholar 

  • Welling, A., Rinne, P., Vihera-Aarnio, A., Kontunen-Soppela, S., Heino, P., Palva, E.T.: Photoperiod and temperature differentially regulate the expression of two dehydrin genes during overwintering of birch (Betula pubescens Ehrh.).-J. exp. Bot. 55: 507–516, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski, M., Close, T.J., Artlip, T., Arora, R.: Seasonal patterns of dehydrins and 70-kDa heat-shock proteins in bark tissues of eight species of woody plants.-Physiol. Plant. 96: 496–505, 1996.

    Article  CAS  Google Scholar 

  • Wisniewski, M., Webb, R., Balsamo, R., Close, T.J., Yu, X.-M., Griffith, M.: Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60: a dehydrin from peach (Prunus persica).-Physiol. Plant. 105: 600–608, 1999.

    Article  CAS  Google Scholar 

  • Wolfraim, L.A., Langis, R., Tyson, H., Dhindsa, R.S.: cDNA sequence, expression, and transcript stability of a cold acclimation-specific gene, cas18, of alfalfa (Medicago falcata) cells.-Plant Physiol. 101: 1275–1282, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Yakubov, B., Barazani, O., Shachack, A., Rowland, L.J., Shoseyov, O., Golan-Goldhirsh, A.: Cloning and expression of a dehydrin-like protein from Pistacia vera L.-Trees 19: 224–230, 2005.

    Article  CAS  Google Scholar 

  • Yang, T., Zhang, L., Zhang, T., Zhang, H., Xu, S., An, L.: Transcriptional regulation network of cold-responsive genes in higher plants.-Plant Sci. 169: 987–995, 2005.

    Article  CAS  Google Scholar 

  • Yao, K., Lockhart, K.M., Kalanack, J.J.: Cloning of dehydrin sequences from Brassica juncea and Brassica napus and their low temperature-inducible expression in germinating seeds.-Plant Physiol. Biochem. 43: 83–89, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Yin, Z., Rorat, T., Szabala, B.M., Ziolkowska, A., Malepszy, S.: Expression of a Solanum sogarandinum SK3-type dehydrin enhances cold tolerance in transgenic cucumber seedlings.-Plant Sci. 170: 1164–1172, 2006.

    Article  CAS  Google Scholar 

  • Zhu, B., Choi, D.-W., Fenton, R., Close, T.J.: Expression of the barley dehydrin multigene family and the development of freezing tolerance.-Mol. gen. Genet. 264: 145–153, 2000.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kosová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosová, K., Vítámvás, P. & Prášil, I.T. The role of dehydrins in plant response to cold. Biol Plant 51, 601–617 (2007). https://doi.org/10.1007/s10535-007-0133-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-007-0133-6

Additional key words

Navigation