Skip to main content
Log in

Iron deficiency on neuronal function

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Because of the intrinsic ability of iron to catalyze the formation of reactive oxygen species, it has been associated with oxidative stress and neurodegenerative diseases. However, iron deficiency (ID) also negatively impacts various functions of the brain, suggesting that iron plays an important physiological role in neuronal processes such as myelination, synaptogenesis, behavior and synaptic plasticity (SP). ID not only produces changes in the hippocampus, striatum, amygdale or prefrontal cortex, it also affects the interaction among these systems. In both humans and rodents, the perturbations of these structures are associated to cognitive deficits. These cognitive alterations have been well correlated with changes in neural plasticity, the possible cellular substrate of memory and learning. Given that SP is strongly affected by early ID and the lasting-neurological consequences remain even after ID has been corrected, it is important to prevent ID as well as to seek effective therapeutic interventions that reduce or reverse the long-term effects of the ID in the nervous system. This review will give an overview of the literature on the effects of iron deficit in neuronal functions such as behavior, neurotransmission and SP. We also discuss our recent data about the possible oxidative effect of iron on the mechanisms involved in neural plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ROS:

Reactive oxygen species

ID:

Iron deficiency

SP:

Synaptic plasticity

CNS:

Central nervous system

PFC:

Prefrontal cortex

DMT1:

Divalent metal transporter 1

DFO:

Desferrioxamine

LTP:

Long-term potentiation

PPF:

Paired-pulse facilitation

ISO:

Isoproterenol

NMDAR:

N-methyl-d-aspartate receptor

Ry:

Ryanodine

RyR:

Ry receptor

CICR:

Calcium-induced calcium release

mEPSCs:

Miniature excitatory postsynaptic currents

ACSF:

Artificial cerebrospinal fluid

fEPSP:

Field excitatory post-synaptic potential

LIP:

Labile iron pool

DCDHF-DA:

2′,7′-dichlorodihydrofluorescein-diacetate

References

  • Agaoglu L, Torun O, Unuvar E, Sefil Y, Demir D (2007) Effects of iron deficiency anemia on cognitive function in children. Arzneimittelforschung 57:426–430

    PubMed  CAS  Google Scholar 

  • Aracena-Parks P, Goonasekera SA, Gilman CP, Dirksen RT, Hidalgo C, Hamilton SL (2006) Identification of cysteines involved in S-nitrosylation, S-glutathionylation, and oxidation to disulfides in ryanodine receptor type 1. J Biol Chem 281:40354–40368

    Article  PubMed  CAS  Google Scholar 

  • Beard J (2007) Recent evidence from human and animal studies regarding iron status and infant development. J Nutr 137:524S–530S

    PubMed  CAS  Google Scholar 

  • Beard JL (2008) Why iron deficiency is important in infant development. J Nutr 138:2534–2536

    PubMed  CAS  Google Scholar 

  • Beard JL, Connor JR (2003) Iron status and neural functioning. Annu Rev Nutr 23:41–58

    Article  PubMed  CAS  Google Scholar 

  • Beard JL, Wiesinger JA, Jones BC (2006) Cellular iron concentrations directly affect the expression levels of norepinephrine transporter in PC12 cells and rat brain tissue. Brain Res 1092:47–58

    Article  PubMed  CAS  Google Scholar 

  • Boric K, Munoz P, Gallagher M, Kirkwood A (2008) Potential adaptive function for altered long-term potentiation mechanisms in aging hippocampus. J Neurosci 28:8034–8039

    Article  PubMed  CAS  Google Scholar 

  • Brunette KE, Tran PV, Wobken JD, Carlson ES, Georgieff MK (2010) Gestational and neonatal iron deficiency alters apical dendrite structure of CA1 pyramidal neurons in adult rat hippocampus. Dev Neurosci 32:238–248

    Article  PubMed  CAS  Google Scholar 

  • Burhans MS, Dailey C, Beard Z, Wiesinger J, Murray-Kolb L, Jones BC, Beard JL (2005) Iron deficiency: differential effects on monoamine transporters. Nutr Neurosci 8:31–38

    Article  PubMed  CAS  Google Scholar 

  • Cao G, Harris KM (2011) Developmental regulation of the late phase of long-term potentiation (L-LTP) and metaplasticity in hippocampal area CA1 of the rat. J Neurophysiol 107:902–912

    Google Scholar 

  • Carlson ES, Tkac I, Magid R, O’Connor MB, Andrews NC, Schallert T, Gunshin H, Georgieff MK, Petryk A (2009) Iron is essential for neuron development and memory function in mouse hippocampus. J Nutr 139:672–679

    Article  PubMed  CAS  Google Scholar 

  • Carlson ES, Fretham SJ, Unger E, O’Connor M, Petryk A, Schallert T, Rao R, Tkac I, Georgieff MK (2010) Hippocampus specific iron deficiency alters competition and cooperation between developing memory systems. J Neurodev Disord 2:133–143

    Article  PubMed  Google Scholar 

  • Castillo PE, Chiu CQ, Carroll RC (2011) Long-term plasticity at inhibitory synapses. Curr Opin Neurobiol 21:328–338

    Google Scholar 

  • Cheah JH, Kim SF, Hester LD, Clancy KW, Patterson SE 3rd, Papadopoulos V, Snyder SH (2006) NMDA receptor-nitric oxide transmission mediates neuronal iron homeostasis via the GTPase Dexras1. Neuron 51:431–440

    Article  PubMed  CAS  Google Scholar 

  • Dalley JW, Cardinal RN, Robbins TW (2004) Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci Biobehav Rev 28:771–784

    Article  PubMed  CAS  Google Scholar 

  • Dallman PR, Schwartz HC (1965) Myoglobin and cytochrome response during repair of iron deficiency in the rat. J Clin Invest 44:1631–1638

    Article  PubMed  CAS  Google Scholar 

  • Erikson KM, Jones BC, Beard JL (2000) Iron deficiency alters dopamine transporter functioning in rat striatum. J Nutr 130:2831–2837

    PubMed  CAS  Google Scholar 

  • Erikson KM, Jones BC, Hess EJ, Zhang Q, Beard JL (2001) Iron deficiency decreases dopamine D1 and D2 receptors in rat brain. Pharmacol Biochem Behav 69:409–418

    Article  PubMed  CAS  Google Scholar 

  • Felt BT, Beard JL, Schallert T, Shao J, Aldridge JW, Connor JR, Georgieff MK, Lozoff B (2006) Persistent neurochemical and behavioral abnormalities in adulthood despite early iron supplementation for perinatal iron deficiency anemia in rats. Behav Brain Res 171:261–270

    Article  PubMed  CAS  Google Scholar 

  • Feng J, Zhou Y, Campbell SL, Le T, Li E, Sweatt JD, Silva AJ, Fan G (2010) Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat Neurosci 13:423–430

    Article  PubMed  CAS  Google Scholar 

  • Gelinas JN, Nguyen PV (2005) Beta-adrenergic receptor activation facilitates induction of a protein synthesis-dependent late phase of long-term potentiation. J Neurosci 25:3294–3303

    Article  PubMed  CAS  Google Scholar 

  • Georgieff MK (2011) Long-term brain and behavioral consequences of early iron deficiency. Nutr Rev 69(Suppl 1):S43–S48

    Article  PubMed  Google Scholar 

  • Gewirtz JC, Hamilton KL, Babu MA, Wobken JD, Georgieff MK (2008) Effects of gestational iron deficiency on fear conditioning in juvenile and adult rats. Brain Res 1237:195–203

    Article  PubMed  CAS  Google Scholar 

  • Goto Y, Grace AA (2005) Dopaminergic modulation of limbic and cortical drive of nucleus accumbens in goal-directed behavior. Nat Neurosci 8:805–812

    Article  PubMed  CAS  Google Scholar 

  • Grantham-McGregor S, Ani C (2001) A review of studies on the effect of iron deficiency on cognitive development in children. J Nutr 131:649S–666S; discussion 666S–668S

    Google Scholar 

  • Haeger P, Alvarez A, Leal N, Adasme T, Nunez MT, Hidalgo C (2009) Increased hippocampal expression of the divalent metal transporter 1 (DMT1) mRNA variants 1B and +IRE and DMT1 protein after NMDA-receptor stimulation or spatial memory training. Neurotox Res 17:238–247

    Article  PubMed  Google Scholar 

  • Herguner S, Kelesoglu FM, Tanidir C, Copur M (2011) Ferritin and iron levels in children with autistic disorder. Eur J Pediatr 171(1):143–146

    Google Scholar 

  • Hernandez-Martinez C, Canals J, Aranda N, Ribot B, Escribano J, Arija V (2011) Effects of iron deficiency on neonatal behavior at different stages of pregnancy. Early Hum Dev 87:165–169

    Article  PubMed  CAS  Google Scholar 

  • Hu D, Cao P, Thiels E, Chu CT, Wu GY, Oury TD, Klann E (2007) Hippocampal long-term potentiation, memory, and longevity in mice that overexpress mitochondrial superoxide dismutase. Neurobiol Learn Mem 87:372–384

    Article  PubMed  CAS  Google Scholar 

  • Jorgenson LA, Wobken JD, Georgieff MK (2003) Perinatal iron deficiency alters apical dendritic growth in hippocampal CA1 pyramidal neurons. Dev Neurosci 25:412–420

    Article  PubMed  CAS  Google Scholar 

  • Jorgenson LA, Sun M, O’Connor M, Georgieff MK (2005) Fetal iron deficiency disrupts the maturation of synaptic function and efficacy in area CA1 of the developing rat hippocampus. Hippocampus 15:1094–1102

    Article  PubMed  CAS  Google Scholar 

  • Kehrer JP (2000) The Haber-Weiss reaction and mechanisms of toxicity. Toxicology 149:43–50

    Article  PubMed  CAS  Google Scholar 

  • Kemmerling U, Munoz P, Muller M, Sanchez G, Aylwin ML, Klann E, Carrasco MA, Hidalgo C (2007) Calcium release by ryanodine receptors mediates hydrogen peroxide-induced activation of ERK and CREB phosphorylation in N2a cells and hippocampal neurons. Cell Calcium 41:491–502

    Article  PubMed  CAS  Google Scholar 

  • Kishida KT, Klann E (2007) Sources and targets of reactive oxygen species in synaptic plasticity and memory. Antioxid Redox Signal 9:233–244

    Article  PubMed  CAS  Google Scholar 

  • Lisman JE, Grace AA (2005) The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 46:703–713

    Article  PubMed  CAS  Google Scholar 

  • Lozoff B (2007) Iron deficiency and child development. Food Nutr Bull 28:S560–S571

    PubMed  Google Scholar 

  • Lozoff B (2011) Early iron deficiency has brain and behavior effects consistent with dopaminergic dysfunction. J Nutr 141:740S–746S

    Article  PubMed  CAS  Google Scholar 

  • Lozoff B, Georgieff MK (2006) Iron deficiency and brain development. Semin Pediatr Neurol 13:158–165

    Article  PubMed  Google Scholar 

  • Lozoff B, Jimenez E, Hagen J, Mollen E, Wolf AW (2000) Poorer behavioral and developmental outcome more than 10 years after treatment for iron deficiency in infancy. Pediatrics 105:E51

    Article  PubMed  CAS  Google Scholar 

  • Lozoff B, Beard J, Connor J, Barbara F, Georgieff M, Schallert T (2006) Long-lasting neural and behavioral effects of iron deficiency in infancy. Nutr Rev 64:S34–S43; discussion S72–S91

    Google Scholar 

  • Lu YF, Hawkins RD (2002) Ryanodine receptors contribute to cGMP-induced late-phase LTP and CREB phosphorylation in the hippocampus. J Neurophysiol 88:1270–1278

    PubMed  CAS  Google Scholar 

  • Lukowski AF, Koss M, Burden MJ, Jonides J, Nelson CA, Kaciroti N, Jimenez E, Lozoff B (2010) Iron deficiency in infancy and neurocognitive functioning at 19 years: evidence of long-term deficits in executive function and recognition memory. Nutr Neurosci 13:54–70

    Article  PubMed  CAS  Google Scholar 

  • Lutter CK (2008) Iron deficiency in young children in low-income countries and new approaches for its prevention. J Nutr 138:2523–2528

    Article  PubMed  CAS  Google Scholar 

  • Madan N, Rusia U, Sikka M, Sharma S, Shankar N (2011) Developmental and neurophysiologic deficits in iron deficiency in children. Indian J Pediatr 78:58–64

    Article  PubMed  Google Scholar 

  • Massaad CA, Klann E (2010) Reactive oxygen species in the regulation of synaptic plasticity and memory. Antioxid Redox Signal 14:2013–2054

    Article  PubMed  Google Scholar 

  • McEchron MD, Cheng AY, Liu H, Connor JR, Gilmartin MR (2005) Perinatal nutritional iron deficiency permanently impairs hippocampus-dependent trace fear conditioning in rats. Nutr Neurosci 8:195–206

    Article  PubMed  CAS  Google Scholar 

  • McEchron MD, Alexander DN, Gilmartin MR, Paronish MD (2008) Perinatal nutritional iron deficiency impairs hippocampus-dependent trace eyeblink conditioning in rats. Dev Neurosci 30:243–254

    Article  PubMed  CAS  Google Scholar 

  • McEchron MD, Goletiani CJ, Alexander DN (2010) Perinatal nutritional iron deficiency impairs noradrenergic-mediated synaptic efficacy in the CA1 area of rat hippocampus. J Nutr 140:642–647

    Article  PubMed  CAS  Google Scholar 

  • Munoz P, Zavala G, Castillo K, Aguirre P, Hidalgo C, Nunez MT (2006) Effect of iron on the activation of the MAPK/ERK pathway in PC12 neuroblastoma cells. Biol Res 39:189–190

    Article  PubMed  CAS  Google Scholar 

  • Munoz P, Humeres A, Elgueta C, Kirkwood A, Hidalgo C, Nunez MT (2011) Iron mediates N-methyl-D-aspartate receptor-dependent stimulation of calcium-induced pathways and hippocampal synaptic plasticity. J Biol Chem 286:13382–13392

    Article  PubMed  CAS  Google Scholar 

  • Pavlopoulos E, Trifilieff P, Chevaleyre V, Fioriti L, Zairis S, Pagano A, Malleret G, Kandel ER (2011) Neuralized1 activates CPEB3: a function for nonproteolytic ubiquitin in synaptic plasticity and memory storage. Cell 47:1369–1383

    Google Scholar 

  • Pokorny J, Yamamoto T (1981) Postnatal ontogenesis of hippocampal CA1 area in rats. I. Development of dendritic arborisation in pyramidal neurons. Brain Res Bull 7:113–120

    Article  PubMed  CAS  Google Scholar 

  • Poldrack RA, Packard MG (2003) Competition among multiple memory systems: converging evidence from animal and human brain studies. Neuropsychologia 41:245–251

    Article  PubMed  Google Scholar 

  • Raman L, Tkac I, Ennis K, Georgieff MK, Gruetter R, Rao R (2005) In vivo effect of chronic hypoxia on the neurochemical profile of the developing rat hippocampus. Brain Res Dev Brain Res 156:202–209

    Article  PubMed  CAS  Google Scholar 

  • Rao R, Georgieff MK (2007) Iron in fetal and neonatal nutrition. Semin Fetal Neonatal Med 12:54–63

    Article  PubMed  Google Scholar 

  • Rao R, Tkac I, Schmidt AT, Georgieff MK (2011) Fetal and neonatal iron deficiency causes volume loss and alters the neurochemical profile of the adult rat hippocampus. Nutr Neurosci 14:59–65

    Article  PubMed  CAS  Google Scholar 

  • Rothman DL, Behar KL, Hyder F, Shulman RG (2003) In vivo NMR studies of the glutamate neurotransmitter flux and neuroenergetics: implications for brain function. Annu Rev Physiol 65:401–427

    Article  PubMed  CAS  Google Scholar 

  • Salazar J, Mena N, Hunot S, Prigent A, Alvarez-Fischer D, Arredondo M, Duyckaerts C, Sazdovitch V, Zhao L, Garrick LM et al (2008) Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson’s disease. Proc Natl Acad Sci USA 105:18578–18583

    Article  PubMed  CAS  Google Scholar 

  • Savonenko A, Munoz P, Melnikova T, Wang Q, Liang X, Breyer RM, Montine TJ, Kirkwood A, Andreasson K (2009) Impaired cognition, sensorimotor gating, and hippocampal long-term depression in mice lacking the prostaglandin E2 EP2 receptor. Exp Neurol 217:63–73

    Article  PubMed  CAS  Google Scholar 

  • Schmidt AT, Waldow KJ, Grove WM, Salinas JA, Georgieff MK (2007) Dissociating the long-term effects of fetal/neonatal iron deficiency on three types of learning in the rat. Behav Neurosci 121:475–482

    Article  PubMed  Google Scholar 

  • Schmidt AT, Alvarez GC, Grove WM, Rao R, Georgieff MK (2011) Early iron deficiency enhances stimulus-response learning of adult rats in the context of competing spatial information. Dev Cogn Neurosci. doi:10.1016/j.dcn.2011.07.014

    Google Scholar 

  • Sesack SR, Carr DB, Omelchenko N, Pinto A (2003) Anatomical substrates for glutamate-dopamine interactions: evidence for specificity of connections and extrasynaptic actions. Ann N Y Acad Sci 1003:36–52

    Article  PubMed  CAS  Google Scholar 

  • Shukla A, Agarwal KN, Chansuria JP, Taneja V (1989) Effect of latent iron deficiency on 5-hydroxytryptamine metabolism in rat brain. J Neurochem 52:730–735

    Article  PubMed  CAS  Google Scholar 

  • Shumyatsky GP, Malleret G, Shin RM, Takizawa S, Tully K, Tsvetkov E, Zakharenko SS, Joseph J, Vronskaya S, Yin D et al (2005) stathmin, a gene enriched in the amygdala, controls both learned and innate fear. Cell 123:697–709

    Article  PubMed  CAS  Google Scholar 

  • Siddappa AM, Georgieff MK, Wewerka S, Worwa C, Nelson CA, Deregnier RA (2004) Iron deficiency alters auditory recognition memory in newborn infants of diabetic mothers. Pediatr Res 55:1034–1041

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Zhu X, Tabaton M, Liu G, McKeel DW Jr, Cohen ML, Wang X, Siedlak SL, Dwyer BE, Hayashi T et al (2010) Increased iron and free radical generation in preclinical Alzheimer disease and mild cognitive impairment. J Alzheimers Dis 19:363–372

    PubMed  Google Scholar 

  • Steward O, Falk PM (1991) Selective localization of polyribosomes beneath developing synapses: a quantitative analysis of the relationships between polyribosomes and developing synapses in the hippocampus and dentate gyrus. J Comp Neurol 314:545–557

    Article  PubMed  CAS  Google Scholar 

  • Stoltzfus RJ, Kvalsvig JD, Chwaya HM, Montresor A, Albonico M, Tielsch JM, Savioli L, Pollitt E (2001) Effects of iron supplementation and anthelmintic treatment on motor and language development of preschool children in Zanzibar: double blind, placebo controlled study. BMJ 323:1389–1393

    Article  PubMed  CAS  Google Scholar 

  • Todorich B, Pasquini JM, Garcia CI, Paez PM, Connor JR (2009) Oligodendrocytes and myelination: the role of iron. Glia 57:467–478

    Article  PubMed  Google Scholar 

  • Tran PV, Carlson ES, Fretham SJ, Georgieff MK (2008) Early-life iron deficiency anemia alters neurotrophic factor expression and hippocampal neuron differentiation in male rats. J Nutr 138:2495–2501

    Article  PubMed  CAS  Google Scholar 

  • Valavanidis A, Vlahoyianni T, Fiotakis K (2005) Comparative study of the formation of oxidative damage marker 8-hydroxy-2′-deoxyguanosine (8-OHdG) adduct from the nucleoside 2′-deoxyguanosine by transition metals and suspensions of particulate matter in relation to metal content and redox reactivity. Free Radic Res 39:1071–1081

    Article  PubMed  CAS  Google Scholar 

  • Ward KL, Tkac I, Jing Y, Felt B, Beard J, Connor J, Schallert T, Georgieff MK, Rao R (2007) Gestational and lactational iron deficiency alters the developing striatal metabolome and associated behaviors in young rats. J Nutr 137:1043–1049

    PubMed  CAS  Google Scholar 

  • Whitlock JR, Heynen AJ, Shuler MG, Bear MF (2006) Learning induces long-term potentiation in the hippocampus. Science 313:1093–1097

    Article  PubMed  CAS  Google Scholar 

  • Yadav D, Chandra J (2011) Iron deficiency: beyond anemia. Indian J Pediatr 78:65–72

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank G. Barrientos for critically reading the manuscript. This work was supported by Millennium Scientific Initiative Grant ICM (P09-022-F) and COPEC-UC foundation (8C055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Muñoz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muñoz, P., Humeres, A. Iron deficiency on neuronal function. Biometals 25, 825–835 (2012). https://doi.org/10.1007/s10534-012-9550-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-012-9550-x

Keywords

Navigation