Skip to main content

Advertisement

Log in

Distorted copper homeostasis with decreased sensitivity to cisplatin upon chaperone Atox1 deletion in Drosophila

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Copper is an integral part of a number of proteins and thus an essential trace metal. However, free copper ions can be highly toxic and every organism has to carefully control its bioavailability. Eukaryotes contain three copper chaperones; Atx1p/Atox1 which delivers copper to ATP7 transporters located in the trans-Golgi network, Cox17 which provides copper to the mitochondrial cytochrome c oxidase, and CCS which is a copper chaperone for superoxide dismutase 1. Here we describe the knockout phenotype of the Drosophila homolog of mammalian Atox1 (ATX1 in yeast). Atox1/− flies develop normally, though at reduced numbers, and the eclosing flies are fertile. However, the mutants are unable to develop on low-copper food. Furthermore, the intestinal copper importer Ctr1B, which is regulated by copper demand, fails to be induced upon copper starvation in Atox1/− larvae. At the same time, intestinal metallothionein is upregulated. This phenotype, which resembles the one of the ATP7 mutant, is best explained by intestinal copper accumulation, combined with insufficient delivery to the rest of the body. In addition, compared to controls, Drosophila Atox1 mutants are relatively insensitive to the anticancer drug cisplatin, a compound which is also imported via Ctr1 copper transporters and was recently found to bind mammalian Atox1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arnesano F, Banci L, Bertini I, Cantini F, Ciofi-Baffoni S, Huffman DL, O’Halloran TV (2001) Characterization of the binding interface between the copper chaperone Atx1 and the first cytosolic domain of Ccc2 ATPase. J Biol Chem 276:41365–41376

    Article  PubMed  CAS  Google Scholar 

  • Balamurugan K, Schaffner W (2006) Copper homeostasis in eukaryotes: teetering on a tightrope. Biochim Biophys Acta 1763:737–746

    Article  PubMed  CAS  Google Scholar 

  • Balamurugan K, Egli D, Hua H, Rajaram R, Seisenbacher G, Georgiev O, Schaffner W (2007) Copper homeostasis in Drosophila by complex interplay of import, storage and behavioral avoidance. EMBO J 26:1035–1044

    Article  PubMed  CAS  Google Scholar 

  • Bayer TA, Schafer S, Simons A, Kemmling A, Kamer T, Tepest R, Eckert A, Schussel K, Eikenberg O, Sturchler-Pierrat C, Abramowski D, Staufenbiel M, Multhaup G (2003) Dietary Cu stabilizes brain superoxide dismutase 1 activity and reduces amyloid Abeta production in APP23 transgenic mice. Proc Natl Acad Sci 100:14187–14192

    Article  PubMed  CAS  Google Scholar 

  • Bischof J, Maeda RK, Hediger M, Karch F, Basler K (2007) An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc Natl Acad Sci 104:3312–3317

    Article  PubMed  CAS  Google Scholar 

  • Boal AK, Rosenzweig AC (2009) Crystal structures of cisplatin bound to a human copper chaperone. J Am Chem Soc 131:14196–14197

    Article  PubMed  CAS  Google Scholar 

  • Burke R, Commons E, Camakaris J (2008) Expression and localisation of the essential copper transporter DmATP7 in Drosophila neuronal and intestinal tissues. Int J Biochem Cell Biol 40:1850–1860

    Article  PubMed  CAS  Google Scholar 

  • Camakaris J, Voskoboinik I, Mercer JF (1999) Molecular mechanisms of copper homeostasis. Biochem Biophys Res Commun 261:225–232

    Article  PubMed  CAS  Google Scholar 

  • Cepeda V, Fuertes MA, Castilla J, Alonso C, Quevedo C, Perez JM (2007) Biochemical mechanisms of cisplatin cytotoxicity. Anticancer Agents Med Chem 7:3–18

    Article  PubMed  CAS  Google Scholar 

  • Cobine P, Wickramasinghe WA, Harrison MD, Weber T, Solioz M, Dameron CT (1999) The Enterococcus hirae copper chaperone CopZ delivers copper(I) to the CopY repressor. FEBS Lett 445:27–30

    Article  PubMed  CAS  Google Scholar 

  • Cottrell DA, Blakely EL, Johnson MA, Ince PG, Turnbull DM (2001) Mitochondrial enzyme-deficient hippocampal neurons and choroidal cells in AD. Neurology 57:260–264

    PubMed  CAS  Google Scholar 

  • Culotta VC, Yang M, O’Halloran TV (2006) Activation of superoxide dismutases: putting the metal to the pedal. Biochim Biophys Acta 1763:747–758

    Article  PubMed  CAS  Google Scholar 

  • De Feo CJ, Aller SG, Siluvai GS, Blackburn NJ, Unger VM (2009) Three-dimensional structure of the human copper transporter hCTR1. Proc Natl Acad Sci 106:4237–4242

    Article  PubMed  Google Scholar 

  • Egli D, Yepiskoposyan H, Selvaraj A, Balamurugan K, Rajaram R, Simons A, Multhaup G, Mettler S, Vardanyan A, Georgiev O, Schaffner W (2006) A family knockout of all four Drosophila metallothioneins reveals a central role in copper homeostasis and detoxification. Mol Cell Biol 26:2286–2296

    Article  PubMed  CAS  Google Scholar 

  • Gupta A, Lutsenko S (2009) Human copper transporters: mechanism, role in human diseases and therapeutic potential. Future Med Chem 1:1125–1142

    Article  PubMed  CAS  Google Scholar 

  • Hamza I, Faisst A, Prohaska J, Chen J, Gruss P, Gitlin JD (2001) The metallochaperone Atox1 plays a critical role in perinatal copper homeostasis. Proc Natl Acad Sci 98:6848–6852

    Article  PubMed  CAS  Google Scholar 

  • Hamza I, Prohaska J, Gitlin JD (2003) Essential role for Atox1 in the copper-mediated intracellular trafficking of the Menkes ATPase. Proc Natl Acad Sci 100:1215–1220

    Article  PubMed  CAS  Google Scholar 

  • Holzer AK, Katano K, Klomp LW, Howell SB (2004) Cisplatin rapidly down-regulates its own influx transporter hCTR1 in cultured human ovarian carcinoma cells. Clin Cancer Res 10:6744–6749

    Article  PubMed  CAS  Google Scholar 

  • Horng YC, Cobine PA, Maxfield AB, Carr HS, Winge DR (2004) Specific copper transfer from the Cox17 metallochaperone to both Sco1 and Cox11 in the assembly of yeast cytochrome c oxidase. J Biol Chem 279:35334–35340

    Article  PubMed  CAS  Google Scholar 

  • Ishida S, Lee J, Thiele DJ, Herskowitz I (2002) Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc Natl Acad Sci 99:14298–14302

    Article  PubMed  CAS  Google Scholar 

  • Kennerson ML, Nicholson GA, Kaler SG, Kowalski B, Mercer JF, Tang J, Llanos RM, Chu S, Takata RI, Speck-Martins CE, Baets J, Almeida-Souza L, Fischer D, Timmerman V, Taylor PE, Scherer SS, Ferguson TA, Bird TD, De Jonghe P, Feely SM, Shy ME, Garbern JY (2010) Missense mutations in the copper transporter gene ATP7A cause X-linked distal hereditary motor neuropathy. Am J Hum Genet 86:343–352

    Article  PubMed  CAS  Google Scholar 

  • Kim BE, Nevitt T, Thiele DJ (2008) Mechanisms for copper acquisition, distribution and regulation. Nat Chem Biol 4:176–185

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Pena MM, Nose Y, Thiele DJ (2002) Biochemical characterization of the human copper transporter Ctr1. J Biol Chem 277:4380–4387

    Article  PubMed  CAS  Google Scholar 

  • Lin X, Okuda T, Holzer A, Howell SB (2002) The copper transporter CTR1 regulates cisplatin uptake in Saccharomyces cerevisiae. Mol Pharmacol 62:1154–1159

    Article  PubMed  CAS  Google Scholar 

  • Markossian KA, Kurganov BI (2003) Copper chaperones, intracellular copper trafficking proteins. Function, structure, and mechanism of action. Biochemistry 68:827–837

    PubMed  CAS  Google Scholar 

  • Maurer I, Zierz S, Moller HJ (2000) A selective defect of cytochrome c oxidase is present in brain of Alzheimer disease patients. Neurobiol Aging 21:455–462

    Article  PubMed  CAS  Google Scholar 

  • Mercer JF (2001) The molecular basis of copper-transport diseases. Trends Mol Med 7:64–69

    Article  PubMed  CAS  Google Scholar 

  • Mercer JF, Llanos RM (2003) Molecular and cellular aspects of copper transport in developing mammals. J Nutr 133:1481S–1484S

    PubMed  CAS  Google Scholar 

  • Norgate M, Lee E, Southon A, Farlow A, Batterham P, Camakaris J, Burke R (2006) Essential roles in development and pigmentation for the Drosophila copper transporter DmATP7. Mol Biol Cell 17:475–484

    Article  PubMed  CAS  Google Scholar 

  • O’Halloran TV, Culotta VC (2000) Metallochaperones, an intracellular shuttle service for metal ions. J Biol Chem 275:25057–25060

    Article  PubMed  Google Scholar 

  • Petris MJ (2004) The SLC31 (Ctr) copper transporter family. Pflugers Arch 447:752–755

    Article  PubMed  CAS  Google Scholar 

  • Prohaska JR, Gybina AA (2004) Intracellular copper transport in mammals. J Nutr 134:1003–1006

    PubMed  CAS  Google Scholar 

  • Puig S, Thiele DJ (2002) Molecular mechanisms of copper uptake and distribution. Curr Opin Chem Biol 6:171–180

    Article  PubMed  CAS  Google Scholar 

  • Safaei R, Maktabi MH, Blair BG, Larson CA, Howell SB (2009) Effects of the loss of Atox1 on the cellular pharmacology of cisplatin. J Inorg Biochem 103:333–341

    Article  PubMed  CAS  Google Scholar 

  • Schmidt PJ, Kunst C, Culotta VC (2000) Copper activation of superoxide dismutase 1 (SOD1) in vivo. Role for protein-protein interactions with the copper chaperone for SOD1. J Biol Chem 275:33771–33776

    Article  PubMed  CAS  Google Scholar 

  • Selvaraj A, Balamurugan K, Yepiskoposyan H, Zhou H, Egli D, Georgiev O, Thiele DJ, Schaffner W (2005) Metal-responsive transcription factor (MTF-1) handles both extremes, copper load and copper starvation, by activating different genes. Genes Dev 19:891–896

    Article  PubMed  CAS  Google Scholar 

  • Sinani D, Adle DJ, Kim H, Lee J (2007) Distinct mechanisms for Ctr1-mediated copper and cisplatin transport. J Biol Chem 282:26775–26785

    Article  PubMed  CAS  Google Scholar 

  • Southon A, Burke R, Norgate M, Batterham P, Camakaris J (2004) Copper homoeostasis in Drosophila melanogaster S2 cells. Biochem J 383:303–309

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan C, Posewitz MC, George GN, Winge DR (1998) Characterization of the copper chaperone Cox17 of Saccharomyces cerevisiae. Biochemistry 37:7572–7577

    Article  PubMed  CAS  Google Scholar 

  • Steiger D, Fetchko M, Vardanyan A, Atanesyan L, Steiner K, Turski ML, Thiele DJ, Georgiev O, Schaffner W (2010) The Drosophila copper transporter Ctr1C functions in male fertility. J Biol Chem 285:17089–17097

    Article  PubMed  CAS  Google Scholar 

  • Tumer Z, Moller LB, Horn N (1999) Mutation spectrum of ATP7A, the gene defective in Menkes disease. Adv Exp Med Biol 448:83–95

    PubMed  CAS  Google Scholar 

  • Turski ML, Thiele DJ (2007) Drosophila Ctr1A functions as a copper transporter essential for development. J Biol Chem 282:24017–24026

    Article  PubMed  CAS  Google Scholar 

  • Walker JM, Tsivkovskii R, Lutsenko S (2002) Metallochaperone Atox1 transfers copper to the NH2-terminal domain of the Wilson’s disease protein and regulates its catalytic activity. J Biol Chem 277:27953–27959

    Article  PubMed  CAS  Google Scholar 

  • Weaver RF, Weissmann C (1979) Mapping of RNA by a modification of the Berk-Sharp procedure: the 5′ termini of 15 S beta-globin mRNA precursor and mature 10S beta-globin mRNA have identical map coordinates. Nucleic Acids Res 7:1175–1193

    Article  PubMed  CAS  Google Scholar 

  • Wong PC, Waggoner D, Subramaniam JR, Tessarollo L, Bartnikas TB, Culotta VC, Price DL, Rothstein J, Gitlin JD (2000) Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase. Proc Natl Acad Sci 97:2886–2891

    Article  PubMed  CAS  Google Scholar 

  • Zhou H, Cadigan KM, Thiele DJ (2003) A copper-regulated transporter required for copper acquisition, pigmentation, and specific stages of development in Drosophila melanogaster. J Biol Chem 278:48210–48218

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. Johannes Bischof and Konrad Basler (University of Zürich) for the Phi C31 integration system, attP fly lines and the flies carrying transposase (y w; + ; ∆2-3 Sb/TM2). We are also grateful to Till Strassen for the maintenance of fly stocks, to Dr. Dominik Steiger for valuable discussions and to Drs. George Hausmann (University of Zürich) and Dennis J. Thiele (Duke University, NC) for critical reading of the manuscript. This work was supported by the Kanton Zürich and by the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Schaffner.

Additional information

Haiqing Hua and Viola Günther contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hua, H., Günther, V., Georgiev, O. et al. Distorted copper homeostasis with decreased sensitivity to cisplatin upon chaperone Atox1 deletion in Drosophila . Biometals 24, 445–453 (2011). https://doi.org/10.1007/s10534-011-9438-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-011-9438-1

Keywords

Navigation