Skip to main content

Advertisement

Log in

Fluxes of greenhouse gases from Andosols under coffee in monoculture or shaded by Inga densiflora in Costa Rica

  • Original Paper
  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

The objective of this study was to evaluate the effect of N fertilization and the presence of N2 fixing leguminous trees on soil fluxes of greenhouse gases. For a one year period, we measured soil fluxes of nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4), related soil parameters (temperature, water-filled pore space, mineral nitrogen content, N mineralization potential) and litterfall in two highly fertilized (250 kg N ha−1 year−1) coffee cultivation: a monoculture (CM) and a culture shaded by the N2 fixing legume species Inga densiflora (CIn). Nitrogen fertilizer addition significantly influenced N2O emissions with 84% of the annual N2O emitted during the post fertilization periods, and temporarily increased soil respiration and decreased CH4 uptakes. The higher annual N2O emissions from the shaded plantation (5.8 ± 0.3 kg N ha−1 year−1) when compared to that from the monoculture (4.3 ± 0.1 kg N ha−1 year−1) was related to the higher N input through litterfall (246 ± 16 kg N ha−1 year−1) and higher potential soil N mineralization rate (3.7 ± 0.2 mg N kg−1 d.w. d−1) in the shaded cultivation when compared to the monoculture (153 ± 6.8 kg N ha−1 year−1 and 2.2 ± 0.2 mg N kg−1 d.w. d−1). This confirms that the presence of N2 fixing shade trees can increase N2O emissions. Annual CO2 and CH4 fluxes of both systems were similar (8.4 ± 2.6 and 7.5 ± 2.3 t C-CO2 ha−1 year−1, −1.1 ± 1.5 and 3.3 ± 1.1 kg C-CH4 ha−1 year−1, respectively in the CIn and CM plantations) but, unexpectedly increased during the dry season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson JM, Ingram JSI (1993) Tropical soil biology and fertility. A handbook of methods, 2nd edn. CAB International, UK

    Google Scholar 

  • Babbar LI, Zak DR (1994) Nitrogen cycling in coffee agroecosystems: net N mineralization and nitrification in the presence and absence of shade trees. Agric Ecosyst Environ 48:107–113. doi:10.1016/0167-8809(94)90081-7

    Article  Google Scholar 

  • Baumert K, Herzog T, Pershing J (2005) Navigating the numbers: greenhouse gas data and international climate policy. World Resources Institute (WRI), USA

    Google Scholar 

  • Bouwman AF, Boumans LJM, Batjes NH (2002) Modelling global annual N2O and NO emissions from fertilized fields. Glob Biogeochem Cycles 16(4), 1080. doi:10.1029/2001GB001812

  • Campos A (2006) Response of soil surface CO2-C flux to land use changes in a tropical cloud forest (Mexico). For Ecol Manage 234:305–312. doi:10.1016/j.foreco.2006.07.012

    Article  Google Scholar 

  • Cattânio JH, Davidson EA, Nepstad DC et al (2002) Unexpected results of a pilot throughfall exclusion experiment on soil emissions of CO2, CH4, N2O, and NO in eastern Amazonia. Biol Fertil Soils 36:102–108. doi:10.1007/s00374-002-0517-x

    Article  Google Scholar 

  • Chapuis-Lardy L, Wrage N, Metay A et al (2007) Soils, a sink for N2O? A review. Glob Change Biol 13:1–17. doi:10.1111/j.1365-2486.2006.01280.x

    Article  Google Scholar 

  • Chu H, Hosen Y, Yagi K (2007) NO, N2O, CH4 and CO2 fluxes in winter barley field of Japanese Andisol as affected by N fertilizer management. Soil Biol Biochem 39:330–339. doi:10.1016/j.soilbio.2006.08.003

    Article  Google Scholar 

  • Crouzet G (2004) Dynamique de l’azote dans des plantations agroforestières à café au Costa Rica (Distribution de racines fines et influence de l’arbre et de la fertilisation sur la lixiviation des nitrates). Dissertation, Centre National d’Études Agronomiques des Régions Chaudes (CNEARC)

  • Davidson EA (1991) Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems. In: Rogers JE, Whitman WB (eds) Microbial production and consumption of greenhouse gases: methane, nitrogen oxides and Halomethanes. Am. Soc. Microbiol Press, Washington, DC

    Google Scholar 

  • Davidson EA, Verchot L, Cattânio JH et al (2000) Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry 48:53–69. doi:10.1023/A:1006204113917

    Article  Google Scholar 

  • Dioniso L (2007) Lixiviación y mineralización de nitrógeno amoniacal y nítrico en café con manejo convencional y orgánico, cada uno bajo sombra y a pleno sol, en San Pedro de Barva, Heredia. Dissertation, Universidad Nacional de Costa Rica

  • FAO (2005) FAOSTAT data. http://faostat.fao.org. Accessed 26 Sept 2006

  • Grimaldi M, Schroth G, Teixeira WG et al (2003) Soil structure. In: Schroth G, Sinclair FL (eds) Trees, crops and soil fertility concepts and research methods. CABI Publishing, Bristol

    Google Scholar 

  • Harmand J-M, Avila H, Dambrine E et al (2007a) Nitrogen dynamics, soil nitrate retention and nitrate water contamination in a coffea arabica-Eucalyptus deglupta agroforestry system in Southern Costa Rica. Biogeochemistry 85:125–139. doi:10.1007/s10533-007-9120-4

    Article  Google Scholar 

  • Harmand JM, Chaves V, Cannavo P et al (2007b) Nitrogen dynamics (coffee productivity, nitrate leaching and N2O emissions) in Coffea arabica systems in Costa Rica according to edaphic conditions, fertilization and shade management. Paper presented at the 2nd international symposium on multi-strata agroforestry systems with perennial crops, CATIE, Turrialba, Costa Rica, 17–21 September 2007

  • Henríquez C, Cabalceta G (1999) Guía práctica para el estudio introductorio de los suelos con un enfoque agrícola. ACCS (Asociación Costarricense de la Ciencia del Suelo), San José

    Google Scholar 

  • Hergoualc’h K, Skiba U, Harmand JM et al (2007) Processes responsible for the nitrous oxide emission from a Costa Rican Andosol under a coffee agroforestry plantation. Biol Fertil Soils 43:787–795. doi:10.1007/s00374-007-0168-z

    Article  Google Scholar 

  • Hütsch B, Webster CP, Powlin DS (1993) Long-term effects of nitrogen fertilization on methane oxidation in soil of the Broadbalk wheat experiment. Soil Biol Biochem 25:1307–1315. doi:10.1016/0038-0717(93)90045-D

    Article  Google Scholar 

  • InfoStat (2004) InfoStat versión 2004. FCA, Universidad Nacional de Córdoba

  • IPCC (2006) 2006 IPCC guidelines for national greenhouse gas inventories. Institute for Global Environmental Strategies (IGES), Hayama, Japan

    Google Scholar 

  • Ishizuka S, Tsuruta H, Murdiyarso D (2002) An intensive field study on CO2, CH4, and N2O emissions from soils at four land-use types in Sumatra, Indonesia. Glob Biogeochem Cycles 16(3) 10.1029/2001GB001614

  • IUSS (International Union of Soil Sciences) Working group WRB (2006) World reference base for soil resources 2006. World Soil Resources Reports N103. FAO (Food and Agriculture Organization of the United Nations), Rome

  • Keller M, Reiners WA (1994) Soil-atmosphere exchange of nitrous oxide, and methane under secondary succession of pasture to forest in the Atlantic lowlands of Costa Rica. Glob Biogeochem Cycles 8:399–409. doi:10.1029/94GB01660

    Article  Google Scholar 

  • Khalil MI, Baggs EM (2005) CH4 oxidation and N2O emissions at varied soil water-filled pore spaces and headspace CH4 concentrations. Soil Biol Biochem 37:1785–1794. doi:10.1016/j.soilbio.2005.02.012

    Article  Google Scholar 

  • Kiese R, Butterbach-Bahl K (2002) N2O and CO2 emissions from three different tropical forest sites in the wet tropic of Queensland, Australia. Soil Biol Biochem 34:975–987. doi:10.1016/S0038-0717(02)00031-7

    Article  Google Scholar 

  • Le Mer J, Roger P (2001) Production, oxidation, emission and consumption of methane by soils: a review. Eur J Soil Biol 37:25–50. doi:10.1016/S1164-5563(01)01067-6

    Article  Google Scholar 

  • Linn D, Doran JW (1984) Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and non tilled soils. Soil Sci Soc Am 48:1267–1272

    Google Scholar 

  • Mata RA, Ramírez JE (1999) Estudio de caracterización de suelos y su relación con el manejo del cultivo de café en la provincia de Heredia. ICAFE, San José

    Google Scholar 

  • Montenegro J, Abarca S (2001) Importancia del sector agropecuario costarricense en la mitigación del calentamiento global. Ministerio de Agricultura y Ganadería, Instituto Meteorológico Nacional, San José

    Google Scholar 

  • Mosier AR, Delgado JA (1997) Methane and nitrous oxide fluxes in grasslands in Western Puerto Rico. Chemosphere 35:2059–2082. doi:10.1016/S0045-6535(97)00231-2

    Article  Google Scholar 

  • Mulvaney RL (1996) Nitrogen inorganic forms. In: Sparks DL (ed) Methods of soil analysis, Part 3: chemical methods, 3rd edn. SSSA and ASA, Madison, WI

    Google Scholar 

  • Mutuo PK, Cadisch G, Albrecht A et al (2005) Potential of agroforestry for carbon sequestration and mitigation of greenhouse gas emissions from soils in the tropics. Nutr Cycl Agroecosyst 71:43–54. doi:10.1007/s10705-004-5285-6

    Article  Google Scholar 

  • Palm C, Alegre J, Arevalo L et al (2002) Nitrous oxide and methane fluxes in six different land use systems in the Peruvian Amazon. Glob Biogeochem Cycles 16. doi:10.1029/2001GB001855

  • Raich J, Schlesinger W (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44B:81–99

    Google Scholar 

  • Reynolds-Vargas JS, Richter DD, Bornemisza E (1994) Environmental impacts of nitrification and nitrate adsorption in fertilized Andisols in the Valle Central of Costa Rica. Soil Sci 157:289–299

    Article  Google Scholar 

  • Rochette P, Janzen H (2005) Towards a revised coefficient for estimating N2O emissions from legumes. Nutr Cycl Agroecosyst 73:171–179. doi:10.1007/s10705-005-0357-9

    Article  Google Scholar 

  • Rogner HH, Zhou D, Bradley R et al (2007) Introduction. In: Metz B, Davidson OR, Bosch PR (eds) Climate change 2007: mitigation. Contribution of working group III to the fourth assessment report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, United Kingdom and New York

    Google Scholar 

  • Ryan MG, Law BE (2005) Interpreting, measuring, and modeling soil respiration. Biogeochemistry 73:3–27. doi:10.1007/s10533-004-5167-7

    Article  Google Scholar 

  • Siles P (2007) Hydrological processes (water use and balance) in a coffee (Coffea arabica) monoculture and a coffee agroforestry plantation shaded by Inga densiflora in Costa Rica. Dissertation, Université Henry Poincaré, Nancy

  • Smith KA, Ball T, Conen F et al (2003) Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. Eur J Soil Sci 54:779–791. doi:10.1046/j.1351-0754.2003.0567.x

    Article  Google Scholar 

  • Stehfest E, Bouwman L (2006) N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modelling of global annual emissions. Nutr Cycl Agroecosyst 74:207–228. doi:10.1007/s10705-006-9000-7

    Article  Google Scholar 

  • Steudler PA, Melillo JM, Feigl BJ et al (1996) Consequence of forest-to-pasture conversion on CH4 fluxes in the Brazilian Amazon Basin. J Geophys Res 101:18547–18554. doi:10.1029/96JD01551

    Article  Google Scholar 

  • Sumner ME, Miller WP (1996) Cation exchange capacity and exchange coefficients. In: Sparks DL (ed) Methods of soil analysis, Part 3: chemical methods, 3rd edn. SSSA and ASA, Madison, WI

    Google Scholar 

  • Vaast P, Harmand JM (2002) Importance des systèmes agroforestiers dans la production de café en Amérique centrale et au Mexique. In: CIRAD (ed) Recherche et caféiculture, Montpellier, France

  • Vaast P, van Kanten R, Siles P et al (2008) Biophysical interactions between timber trees and arabica coffee in suboptimal conditions of Central America. In: Shibu J, Gordon AM (eds) Toward agroforestry design: an ecological approach. Springer, Dordrecht

    Google Scholar 

  • Veldkamp E, Keller M (1997) Nitrogen oxide emissions from a banana plantation in the humid tropics. J Geophys Res 102:15889–15898. doi:10.1029/97JD00767

    Article  Google Scholar 

  • Veldkamp E, Keller M, Nuñez M (1998) Effect of pasture management on N2O and NO emissions from soils in the humid tropics of Costa Rica. Glob Biogeochem Cycles 12:71–79. doi:10.1029/97GB02730

    Article  Google Scholar 

  • Verchot LV, Davidson EA, Cattânio JH et al (2000) Land-use change and biogeochemical controls of methane fluxes in soils of eastern Amazonia. Ecosystems (NY, Print) 3:41–56. doi:10.1007/s100210000009

    Article  Google Scholar 

  • Verchot LV, Hutabarat L, Hairiah K et al (2006) Nitrogen availability and soil N2O emissions following conversion of forests to coffee in southern Sumatra. Glob Biogeochem Cycles 20:GB4008. doi:10.1029/2005GB002469

    Article  Google Scholar 

  • Verchot LV, Brienza S Jr, Costa de Oliveira V et al (2008) Fluxes of CH4, CO2, NO, and N2O in an improved fallow agroforestry system in eastern Amazonia. Agric Ecosyst Environ 126:113–121. doi:10.1016/j.agee.2008.01.012

    Article  Google Scholar 

  • Wrage N, Velthof GL, Van Beusichem ML et al (2001) Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol Biochem 33:1723–1732. doi:10.1016/S0038-0717(01)00096-7

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank ICAFÉ for providing the study site. The laboratory experiment and soil analyses were carried out at CATIE, Costa Rica and gas analysis at CEH, UK. Many thanks to Luis Dioniso, Jonhatan Ramos, Patrice Cannavo and John Parker for the technical assistance and Patricia Leandro for soil analysis. The authors would like to thank the anonymous reviewers and Professor G.P. Robertson, who helped with their constructive comments to improve greatly the quality of this manuscript. The European Commission (INCO project CASCA, ICA4-CT-2001-10071) provided part of the costs of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristell Hergoualc’h.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hergoualc’h, K., Skiba, U., Harmand, JM. et al. Fluxes of greenhouse gases from Andosols under coffee in monoculture or shaded by Inga densiflora in Costa Rica. Biogeochemistry 89, 329–345 (2008). https://doi.org/10.1007/s10533-008-9222-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-008-9222-7

Keywords

Navigation