Skip to main content
Log in

Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes

  • Review Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Bioremediation, involving bioaugmentation and/or biostimulation, being an economical and eco-friendly approach, has emerged as the most advantageous soil and water clean-up technique for contaminated sites containing heavy metals and/or organic pollutants. Addition of pre-grown microbial cultures to enhance the degradation of unwanted compounds (bioaugmentation) and/or injection of nutrients and other supplementary components to the native microbial population to induce propagation at a hastened rate (biostimulation), are the most common approaches for in situ bioremediation of accidental spills and chronically contaminated sites worldwide. However, many factors like strain selection, microbial ecology, type of contaminant, environmental constraints, as well as procedures of culture introduction, may lead to their failure. These drawbacks, along with fragmented literature, have opened a gap between laboratory trials and on-field application. The present review discusses the effectiveness as well as the limitations of bioaugmentation and biostimulation processes. A summary of experimental studies both in confined systems under controlled conditions and of real case studies in the field is presented. A comparative account between the two techniques and also the current scenario worldwide for in situ biotreatment using bioaugmentation and biostimulation, are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aldrett S, Bonner JS, Mills MA, Autenrieth RL, Stephens FL (1997) Microbial degradation of crude oil in marine environments tested in a flask experiment. Water Res 31:2840–2848

    Article  CAS  Google Scholar 

  • Alisi C, Musella R, Tasso F, Ubaldi C, Manzo S, Cremisini C, Sprocati AR (2009) Bioremediation of diesel oil in a co-contaminated soil by bioaugmentation with a microbial formula tailored with native strains selected for heavy metals resistance. Sci Total Environ 407:3024–3032. doi:10.1016/j.scitotenv.2009.01.011

    Article  PubMed  CAS  Google Scholar 

  • Atlas RM (1981) Microbial-degradation of petroleum-hydrocarbons—an environmental perspective. Microbiol Rev 45:180–209

    PubMed  CAS  Google Scholar 

  • Atlas RM (1995) Bioremediation of petroleum pollutants. Int Biodeterior Biodegrad 35:317–327

    Article  CAS  Google Scholar 

  • Baek KH, Yoon BD, Kim BH, Cho DH, Lee IS, Oh HM, Kim HS (2007) Monitoring of microbial diversity and activity during bioremediation of crude OH-contaminated soil with different treatments. J Microbiol Biotechnol 17:67–73

    PubMed  CAS  Google Scholar 

  • Balba MT, Al-Awadhi N, Al-Daher R (1998) Bioremediation of oil-contaminated soil: microbiological methods for feasibility assessment and field evaluation. J Microbiol Methods 32:155–164. doi:10.1016/S0167-7012(98)00020-7

    Article  CAS  Google Scholar 

  • Bartha R (1986) Biotechnology of petroleum pollutant biodegradation. Microb Ecol 12:155–172

    Article  CAS  Google Scholar 

  • Bartha R, Atlas RM (1977) The microbiology of aquatic oil spills. Adv Appl Microbiol 22:225–266

    Article  PubMed  CAS  Google Scholar 

  • Bento FM, Camargo FAO, Okeke BC, Frankenberger WT (2005) Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresour Technol 96:1049–1055. doi:10.1016/j.biotech.2004.09.008

    Article  PubMed  CAS  Google Scholar 

  • Bordoloi NK, Konwar BK (2009) Bacterial biosurfactant in enhancing solubility and metabolism of petroleum hydrocarbons. J Hazard Mater 170:495–505. doi:10.1016/j.jhazmat.2009.04.136

    Article  PubMed  CAS  Google Scholar 

  • Bouchez T, Patureau D, Dabert P, Juretschko S, Dore J, Delgenes P, Moletta R, Wagner M (2000) Ecological study of a bioaugmentation failure. Environ Microbiol 2:179–190

    Article  PubMed  CAS  Google Scholar 

  • Cassidy MB, Lee H, Trevors JT (1996) Environmental applications of immobilized microbial cells: a review. J Ind Microbiol 16:79–101

    Article  CAS  Google Scholar 

  • de Carvalho CCCR, da Fonseca MMR (2005) The remarkable Rhodococcus erythropolis. Appl Microbiol Biotechnol 67:715–726. doi:10.1007/s00253-005-1932-3

    Article  PubMed  Google Scholar 

  • de Carvalho CCCR, Parreno-Marchante B, Neumann G, da Fonseca MMR, Heipieper HJ (2005) Adaptation of Rhodococcus erythropolis DCL14 to growth on n-alkanes, alcohols and terpenes. Appl Microbiol Biotechnol 67:383–388. doi:10.1007/s00253-004-1750-z

    Article  PubMed  CAS  Google Scholar 

  • de Carvalho CCCR, Wick LY, Heipieper HJ (2009) Cell wall adaptations of planktonic and biofilm Rhodococcus erythropolis cells to growth on C5 to C16 n-alkane hydrocarbons. Appl Microbiol Biotechnol 82:311–320. doi:10.1007/s00253-008-1809-3

    Article  PubMed  CAS  Google Scholar 

  • Delille D, Delille B, Pelletier E (2002) Effectiveness of bioremediation of crude oil contaminated subantarctic intertidal sediment: the microbial response. Microb Ecol 44:118–126. doi:10.1007/s00248-001-1047-z

    Article  PubMed  CAS  Google Scholar 

  • Delille D, Coulon F, Pelletier E (2004) Effects of temperature warming during a bioremediation study of natural and nutrient-amended hydrocarbon-contaminated sub-Antarctic soils. Cold Reg Sci Technol 40:61–70. doi:10.1016/j.coldregions.2004.05.005

    Article  Google Scholar 

  • Delille D, Pelletier E, Rodriguez-Blanco A, Ghiglione JF (2009) Effects of nutrient and temperature on degradation of petroleum hydrocarbons in sub-Antarctic coastal seawater. Polar Biol 32:1521–1528. doi:10.1007/s00300-009-0652-z

    Article  Google Scholar 

  • Dibble JT, Bartha R (1979) Effect of environmental parameters on the biodegradation of oil sludge. Appl Environ Microbiol 37:729–739

    PubMed  CAS  Google Scholar 

  • Dott W, Feidieker D, Kampfer P, Schleibinger H, Strechel S (1989) Comparison of autochthonous bacteria and commercially available cultures with respect to their effectiveness in fuel-oil degradation. J Ind Microbiol 4:365–373

    Article  Google Scholar 

  • Dua M, Singh A, Sethunathan N, Johri AK (2002) Biotechnology and bioremediation: successes and limitations. Appl Microbiol Biotechnol 59:143–152. doi:10.1007/s00253-002-1024-6

    Article  PubMed  CAS  Google Scholar 

  • Duke NC, Burns KA, Swannell RPJ, Dalhaus O, Rupp RJ (2000) Dispersant use and a bioremediation strategy as alternate means of reducing impacts of large oil spills on mangroves: the Gladstone field trials. Mar Pollut Bull 41:403–412

    Article  CAS  Google Scholar 

  • El Fantroussi S, Agathos SN (2005) Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 8:268–275. doi:10.1016/j.mib.2005.04.011

    Article  PubMed  CAS  Google Scholar 

  • Farhadian M, Vachelard C, Duchez D, Larroche C (2008) In situ bioremediation of monoaromatic pollutants in groundwater: a review. Bioresour Technol 99:5296–5308. doi:10.1016/j.biortech.2007.10.025

    Article  PubMed  CAS  Google Scholar 

  • Gallego JR, Fernandez JR, Diez-Sanz F, Ordonez S, Sastre H, Gonzalez-Rojas E, Pelaez AI, Sanchez J (2007) Bioremediation for shoreline cleanup: in situ vs. on-site treatments. Environ Eng Sci 24:493–504. doi:10.1089/ees.2006.0091

    Article  CAS  Google Scholar 

  • Garcia-Blanco S, Venosa AD, Suidan MT, Lee K, Cobanli S, Haines JR (2007) Biostimulation for the treatment of an oil-contaminated coastal salt marsh. Biodegradation 18:1–15. doi:10.1007/s10532-005-9029-3

    Article  PubMed  CAS  Google Scholar 

  • Gentry TJ, Rensing C, Pepper IL (2004) New approaches for bioaugmentation as a remediation technology. Crit Rev Environ Sci Technol 34:447–494. doi:10.1080/10643380490452362

    Article  CAS  Google Scholar 

  • Goldstein RM, Mallory LM, Alexander M (1985) Reasons for possible failure of inoculation to enhance biodegradation. Appl Environ Microbiol 50:977–983

    PubMed  CAS  Google Scholar 

  • Hamdi H, Benzarti S, Manusadzianas L, Aoyama I, Jedidi N (2007) Bioaugmentation and biostimulation effects on PAH dissipation and soil ecotoxicity under controlled conditions. Soil Biol Biochem 39:1926–1935. doi:10.1016/j.soilbio.2007.02.008

    Article  CAS  Google Scholar 

  • Hankard PK, Svendsen C, Wright J, Wienberg C, Fishwick SK, Spurgeon DJ, Weeks JM (2004) Biological assessment of contaminated land using earthworm biomarkers in support of chemical analysis. Sci Total Environ 330:9–20. doi:10.1016/j.scitotenv.2003.08.023

    Article  PubMed  CAS  Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15. doi:10.1016/j.jhazmat.2009.03.137

    Article  PubMed  CAS  Google Scholar 

  • Horel A, Schiewer S (2009) Investigation of the physical and chemical parameters affecting biodegradation of diesel and synthetic diesel fuel contaminating Alaskan soils. Cold Reg Sci Technol 58:113–119. doi:10.1016/j.coldregions.2009.04.004

    Article  Google Scholar 

  • Ishige T, Tani A, Sakai YR, Kato N (2003) Wax ester production by bacteria. Curr Opin Microbiol 6:244–250. doi:10.1016/S1369-5274(03)00053-5

    Article  PubMed  CAS  Google Scholar 

  • Isken S, de Bont JAM (1998) Bacteria tolerant to organic solvents. Extremophiles 2:229–238

    Article  PubMed  CAS  Google Scholar 

  • Jimenez N, Vinas M, Sabate J, Diez S, Bayona JM, Solanas AM, Albaiges J (2006) The Prestige oil spill. 2. Enhanced biodegradation of a heavy fuel oil under field conditions by the use of an oleophilic fertilizer. Environ Sci Technol 40:2578–2585. doi:10.1021/es052370z

    Article  PubMed  CAS  Google Scholar 

  • Khomenkov VG, Shevelev AB, Zhukov VG, Zagustina NA, Bezborodov AM, Popov VO (2008) Organization of metabolic pathways and molecular-genetic mechanisms of xenobiotic degradation in microorganisms: a review. Appl Biochem Microbiol 44:117–135. doi:10.1134/S0003683808020014

    Article  CAS  Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial-degradation of hydrocarbons in the environment. Microbiol Rev 54:305–315

    PubMed  CAS  Google Scholar 

  • Ledin M (2000) Accumulation of metals by microorganisms—processes and importance for soil systems. Earth Sci Rev 51:1–31. doi:10.1016/S0012-8252(00)00008-8

    Article  CAS  Google Scholar 

  • Lendvay JM, Loffler FE, Dollhopf M, Aiello MR, Daniels G, Fathepure BZ, Gebhard M, Heine R, Helton R, Shi J, Krajmalnik-Brown R, Major CL, Barcelona MJ, Petrovskis E, Hickey R, Tiedje JM, Adriaens P (2003) Bioreactive barriers: a comparison of bioaugmentation and biostimulation for chlorinated solvent remediation. Environ Sci Technol 37:1422–1431. doi:10.1021/es025985u

    Article  CAS  Google Scholar 

  • Li XJ, Lin X, Li PJ, Liu W, Wang L, Ma F, Chukwuka KS (2009) Biodegradation of the low concentration of polycyclic aromatic hydrocarbons in soil by microbial consortium during incubation. J Hazard Mater 172:601–605. doi:10.1016/j.jhazmat.2009.07.044

    Article  PubMed  CAS  Google Scholar 

  • Liu YJ, Zhang AN, Wang XC (2009) Biodegradation of phenol by using free and immobilized cells of Acinetobacter sp XA05 and Sphingomonas sp FG03. Biochem Eng J 44:187–192. doi:10.1016/j.bej.2008.12.001

    Article  CAS  Google Scholar 

  • Liu WX, Luo YM, Teng Y, Li ZG, Ma LQ (2010) Bioremediation of oily sludge-contaminated soil by stimulating indigenous microbes. Environ Geochem Health 32:23–29. doi:10.1007/s10653-009-9262-5

    Article  PubMed  CAS  Google Scholar 

  • Matar MS (1992) Characteristics of crude oils and properties of petroleum products. In: Abdel-Aal HK, Bakr BA, Al-Sahlawi MA (eds) Petroleum economics and engineering, 2nd edn. Marcel Dekker, Inc., New York, pp 33–54

    Google Scholar 

  • McLoughlin AJ (1994) Controlled release of immobilized cells as a strategy to regulate ecological competence of inocula. In: Scheper T (ed) Biotechnics/wastewater. Springer, Berlin, pp 1–45

    Chapter  Google Scholar 

  • Mishra S, Jyot J, Kuhad RC, Lal B (2001) In situ bioremediation potential of an oily sludge-degrading bacterial consortium. Curr Microbiol 43:328–335

    Article  PubMed  CAS  Google Scholar 

  • Mohammed D, Ramsubhag A, Beckles DM (2007) An assessment of the biodegradation of petroleum hydrocarbons in contaminated soil using non-indigenous, commercial microbes. Water Air Soil Pollut 182:349–356. doi:10.1007/s11270-007-9346-8

    Article  CAS  Google Scholar 

  • Moslemy P, Neufeld RJ, Guiot SR (2002) Biodegradation of gasoline by gellan gum-encapsulated bacterial cells. Biotechnol Bioeng 80:175–184. doi:10.1002/bit.10358

    Article  PubMed  CAS  Google Scholar 

  • Mueller JG, Resnick SM, Shelton ME, Pritchard PH (1992) Effect of inoculation on the biodegradation of weathered Prudhoe Bay crude-oil. J Ind Microbiol 10:95–102

    Article  Google Scholar 

  • Mulkins-Phillips GJ, Stewart JE (1974) Effect of environmental parameters on bacterial-degradation of bunker-C oil, crude oils, and hydrocarbons. Appl Microbiol 28:915–922

    PubMed  CAS  Google Scholar 

  • Nikolopoulou M, Kalogerakis N (2008) Enhanced bioremediation of crude oil utilizing lipophilic fertilizers combined with biosurfactants and molasses. Mar Pollut Bull 56:1855–1861. doi:10.1016/j.marpolbul.2008.07.021

    Article  PubMed  CAS  Google Scholar 

  • Nikolopoulou M, Kalogerakis N (2009) Biostimulation strategies for fresh and chronically polluted marine environments with petroleum hydrocarbons. J Chem Technol Biotechnol 84:802–807. doi:10.1002/jctb.2182

    Article  CAS  Google Scholar 

  • Nyer EK, Payne F, Suthersan S (2002) Environment vs. bacteria or let’s play ‘name that bacteria’. Ground Water Monit Remediat 23:36–45

    Article  CAS  Google Scholar 

  • Obuekwe CO, Al-Muttawa EM (2001) Self-immobilized bacterial cultures with potential for application as ready-to-use seeds for petroleum bioremediation. Biotechnol Lett 23:1025–1032

    Article  CAS  Google Scholar 

  • OPEC (2009) In: Ibrahim OK (ed) Annual Report 2008. Organization of the Petroleum Exporting Countries. http://www.opec.org/opec_web/static_files_project/media/downloads/publications/AR2008.pdf. Accessed 17 May 2010

  • Owens EH, Taylor E, Humphrey B (2008) The persistence and character of stranded oil on coarse-sediment beaches. Mar Pollut Bull 56:14–26. doi:10.1016/j.marpolbul.2007.08.020

    Article  PubMed  CAS  Google Scholar 

  • Prince RC (1997) Bioremediation of marine oil spills. Trends Biotechnol 15:158–160

    Article  CAS  Google Scholar 

  • Pritchard PH, Mueller JG, Rogers JC, Kremer FV, Glaser JA (1992) Oil spill bioremediation: experiences, lessons and results from the Exxon Valdez oil spill Alaska. Biodegradation 3:315–335

    Article  CAS  Google Scholar 

  • Raghavan PUM, Vivekanandan M (1999) Bioremediation of oil-spilled sites through seeding of naturally adapted Pseudomonas putida. Int Biodeterior Biodegrad 44:29–32

    Article  Google Scholar 

  • Rahman KSM, Banat IM, Thahira J, Thayumanavan T, Lakshmanaperumalsamy P (2002a) Bioremediation of gasoline contaminated soil by a bacterial consortium amended with poultry litter, coir pith, and rhamnolipid biosurfactant. Bioresour Technol 81:25–32

    Article  PubMed  CAS  Google Scholar 

  • Rahman KSM, Thahira-Rahman J, Lakshmanaperumalsamy P, Banat IM (2002) Towards efficient crude oil degradation by a mixed bacterial consortium. Bioresour Technol 85:257–261. PII S0960-8524(02)00119-0

    Google Scholar 

  • Roane TM, Josephson KL, Pepper IL (2001) Dual-bioaugmentation strategy to enhance remediation of cocontaminated soil. Appl Environ Microbiol 67:3208–3215. doi:10.1128/AEM.67.7.3208-3215.2001

    Article  PubMed  CAS  Google Scholar 

  • Ron EZ, Rosenberg E (2002) Biosurfactants and oil bioremediation. Curr Opin Biotechnol 13:249–252. doi:10.1016/S0958-1669(02)00316-6

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg E, Legmann R, Kushmaro A, Taube R, Adler E, Ron EZ (1992) Petroleum bioremediation—a multiphase problem. Biodegradation 3:337–350

    Article  CAS  Google Scholar 

  • Sanscartier D, Laing T, Reimer K, Zeeb B (2009) Bioremediation of weathered petroleum hydrocarbon soil contamination in the Canadian High Arctic: laboratory and field studies. Chemosphere 77:1121–1126. doi:10.1016/j.chemosphere.2009.09.006

    Article  PubMed  CAS  Google Scholar 

  • Sarkar D, Ferguson M, Datta R, Birnbaum S (2005) Bioremediation of petroleum hydrocarbons in contaminated soils: comparison of biosolids addition, carbon supplementation, and monitored natural attenuation. Environ Pollut 136:187–195. doi:10.1016/j.envpol.2004.09.025

    Article  PubMed  CAS  Google Scholar 

  • Simon MA, Bonner JS, McDonald TJ, Autenrieth RL (1999) Bioaugmentation for the enhanced bioremediation of petroleum in a wetland. Polycycl Aromat Compd 14:231–239

    Article  Google Scholar 

  • Simon MA, Bonner JS, Page CA, Townsend RT, Mueller DC, Fuller CB, Autenrieth RL (2004) Evaluation of two commercial bioaugmentation products for enhanced removal of petroleum from a wetland. Ecol Eng 22:263–277. doi:10.1016/j.ecoleng.2004.06.005

    Article  Google Scholar 

  • Sugai SF, Lindstrom JE, Braddock JF (1997) Environmental influences on the microbial degradation of Exxon Valdez oil on the shorelines of Prince William Sound, Alaska. Environ Sci Technol 31:1564–1572

    Article  CAS  Google Scholar 

  • Swannell RPJ, Lee K, McDonagh M (1996) Field evaluations of marine oil spill bioremediation. Microbiol Rev 60:342–365

    PubMed  CAS  Google Scholar 

  • Swannell RPJ, Mitchell D, Lethbridge G, Jones D, Heath D, Hagley M, Jones M, Petch S, Milne R, Croxford R, Lee K (1999) A field demonstration of the efficacy of bioremediation to treat oiled shorelines following the Sea Empress incident. Environ Technol 20:863–873

    Article  CAS  Google Scholar 

  • Thomassin-Lacroix EJM, Eriksson M, Reimer KJ, Mohn WW (2002) Biostimulation and bioaugmentation for on-site treatment of weathered diesel fuel in Arctic soil. Appl Microbiol Biotechnol 59:551–556. doi:10.1007/s00253-002-1038-0

    Article  PubMed  CAS  Google Scholar 

  • Thompson IP, van der Gast CJ, Ciric L, Singer AC (2005) Bioaugmentation for bioremediation: the challenge of strain selection. Environ Microbiol 7:909–915. doi:10.1111/j.1462-2920.2005.00804.x

    Article  PubMed  CAS  Google Scholar 

  • Tsutsumi H, Kono M, Takai K, Manabe T, Haraguchi M, Yamamoto I, Oppenheimer C (2000) Bioremediation on the shore after an oil spill from the Nakhodka in the Sea of Japan. III. Field tests of a bioremediation agent with microbiological cultures for the treatment of an oil spill. Mar Pollut Bull 40:320–324

    Article  CAS  Google Scholar 

  • van der Gast CJ, Whiteley AS, Thompson IP (2004) Temporal dynamics and degradation activity of an bacterial inoculum for treating waste metal-working fluid. Environ Microbiol 6:254–263. doi:10.1111/j.1462-2920.2004.00566.x

    Article  PubMed  Google Scholar 

  • van der Geize R, Dijkhuizen L (2004) Harnessing the catabolic diversity of rhodococci for environmental and biotechnological applications. Curr Opin Microbiol 7:255–261. doi:10.1016/j.mib.2004.04.001

    Article  PubMed  Google Scholar 

  • Van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67:503–549. doi:10.1128/MMBR.67.4.503-549.2003

    Article  PubMed  Google Scholar 

  • vanVeen JA, vanOverbeek LS, vanElsas JD (1997) Fate and activity of microorganisms introduced into soil. Microbiol Mol Biol Rev 61:121–135

    CAS  Google Scholar 

  • Venosa AD, Haines JR, Nisamaneepong W, Govind R, Pradhan S, Siddique B (1992) Efficacy of commercial products in enhancing oil biodegradation in closed laboratory reactors. J Ind Microbiol 10:13–23

    Article  CAS  Google Scholar 

  • Venosa AD, Suidan MT, Wrenn BA, Strohmeier KL, Haines JR, Eberhart BL, King D, Holder E (1996) Bioremediation of an experimental oil spill on the shoreline of Delaware Bay. Environ Sci Technol 30:1764–1775

    Article  CAS  Google Scholar 

  • Walker JD, Colwell RR (1976) Long-chain normal-alkanes occurring during microbial-degradation of petroleum. Can J Microbiol 22:886–891

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

M. Tyagi and C.C.C.R. de Carvalho would like to thank the Fundação para a Ciência e a Tecnologia, Portugal, for financial support (Ph.D. grant SFRH/BD/43930/2008 and contract under Programme Ciência 2007, respectively).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla C. C. R. de Carvalho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyagi, M., da Fonseca, M.M.R. & de Carvalho, C.C.C.R. Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22, 231–241 (2011). https://doi.org/10.1007/s10532-010-9394-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-010-9394-4

Keywords

Navigation