Skip to main content
Log in

Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system

  • Review Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Increasing discharge and improper management of liquid and solid industrial wastes have created a great concern among industrialists and the scientific community over their economic treatment and safe disposal. White rot fungi (WRF) are versatile and robust organisms having enormous potential for oxidative bioremediation of a variety of toxic chemical pollutants due to high tolerance to toxic substances in the environment. WRF are capable of mineralizing a wide variety of toxic xenobiotics due to non-specific nature of their extracellular lignin mineralizing enzymes (LMEs). In recent years, a lot of work has been done on the development and optimization of bioremediation processes using WRF, with emphasis on the study of their enzyme systems involved in biodegradation of industrial pollutants. Many new strains have been identified and their LMEs isolated, purified and characterized. In this review, we have tried to cover the latest developments on enzyme systems of WRF, their low molecular mass mediators and their potential use for bioremediation of industrial pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aguiar A, Souza-Cruz PBD, Ferraz A (2006) Oxalic acid, Fe3+-reduction activity and oxidative enzymes detected in culture extracts recovered from Pinus taeda wood chips biotreated by Ceriporiopsis subvermispora. Enzyme Microb Technol 38:873–878

    CAS  Google Scholar 

  • Ahmadi M, Vahabzadeh F, Bonakdarpour B, Mofarrah E, Mehranian M (2005) Application of the central composite design and response surface methodology to the advanced treatment of olive oil processing wastewater using Fenton's peroxidation. J Hazard Mater 123:187–195

    PubMed  CAS  Google Scholar 

  • Ahmadi M, Vahabzadeh F, Bonakdarpour B, Mehranian M, Mofarrah E (2006) Phenolic removal in olive oil mill wastewater using loofah-immobilized Phanerochaete chrysosporium. World J Microbiol Biotechnol 22:119–127

    CAS  Google Scholar 

  • Aranda E, Sampedro I, Ocampo JA, García-Romera I (2006) Phenolic removal of olive-mill dry residues by laccase activity of white-rot fungi and its impact on tomato plant growth. Int Biodet Biodeg 58:176–179

    CAS  Google Scholar 

  • Asgher M, Shah SAH, Ali M, Legge RL (2006) Decolorization of some reactive textile dyes by white rot fungi isolated in Pakistan. World J Microbiol Biotechnol 22:89–93

    CAS  Google Scholar 

  • Asgher M, Asad MJ, Bhatti HN, Legge RL (2007) Hyperactivation and thermostabilization of Phanerochaete chrysosporium lignin peroxidase by immobilization in xerogels. World J Microbiol Biotechnol 23:525–531

    CAS  Google Scholar 

  • Asgher M, Kausar S, Bhatti HN, Shah SAH, Ali M (2008) Optimization of medium for decolorization of Solar golden yellow R direct textile dye by Schizophyllum commune IBL-06. Int Biodet Biodeg 61:189–193

    CAS  Google Scholar 

  • Atagana HI, Ejechi BO, Ayilumo AM (1999) Fungi associated with degradation of wastes from rubber processing industry. Environ Monit Assess 55:401–408

    CAS  Google Scholar 

  • Baborová P, Moder M, Baldrian P, Cajthamlová K, Cajthaml T (2006) Purification of a new manganese peroxidase of the white-rot fungus Irpex lacteus and degradation of polycyclic aromatic hydrocarbons by the enzyme. Res Microbiol 157:248–253

    PubMed  Google Scholar 

  • Balan DSL, Monteiro RTR (2001) Decolorization of textile indigo dye by ligninolytic fungi. J Biotechnol 89:141–145

    PubMed  CAS  Google Scholar 

  • Baldrian P (2004) Purification and characterization of laccase from the white-rot fungus Daedalea quercina and decolorization of synthetic dyes by the enzyme. Appl Microbiol Biotechnol 63:560–563

    PubMed  CAS  Google Scholar 

  • Baldrian P, Valaskova V, Meerhautova V, Gabriel J (2005) Degradation of lignocellulose by Pleurotus ostreatus in the presence of copper, manganese lead and zinc. Res Microbiol 156:670–676

    PubMed  CAS  Google Scholar 

  • Barr DP, Aust SD (1994) Mechanisms white rot fungi use to degrade pollutants. Environ Sci Technol 28:78–87

    Google Scholar 

  • Boer CG, Obici L, Giatti C, De Souza CG, Rosane M, Peralta M (2004) Decolorization of synthetic dyes by solid-state cultures of Lentinula (Lentinus) edodes producing manganese peroxidase as the main ligninolytic enzyme. Biores Technol 94:107–112

    CAS  Google Scholar 

  • Bredberg K, Persson J, Christiansson M, Stenberg B, Holst O (2001) Anaerobic desulfurization of ground rubber with the thermophilic archaeon Pyrococcus furiosus-a new method for rubber recycling. Appl Microbiol Biotechnol 55:43–48

    PubMed  CAS  Google Scholar 

  • Bredberg K, Andersson BE, Landfors E, Holst O (2002) Microbial detoxification of waste rubber material by wood-rotting fungi. Biores Technol 83:221–224

    CAS  Google Scholar 

  • Burnison BK, Comba ME, Carey JH, Parrott J, Sherry JP (1999) Isolation and tentative identification of compound in bleached-kraft mill effluent capable of causing mixed-function oxygenase induction in fish. Environ Toxicol Chem 18:2882–2887

    CAS  Google Scholar 

  • Cabana H, Jiwan J-LH, Rozenberg R, Elisashvili V, Penninckx M, Agathos SN, Jones JP (2007) Elimination of endocrine disrupting chemicals nonylphenol and bisphenol A and personal care product ingredient triclosan using enzyme preparation from the white rot fungus Coriolopsis polyzona. Chemosphere 67:770–778

    PubMed  CAS  Google Scholar 

  • Cadimaliev DA, Revin VV, Atykyan NA, Samuilov VD (2005) Extracellular oxidases of the lignin-degrading fungus Panus tigrinus. Biochemistry (Moscow) 70:703–707

    CAS  Google Scholar 

  • Chairattanamanokorn P, Imai T, Kondo R, Sekine M, Higuchi T, Ukita M (2005) Decolorization of alcohol distillery wastewater by thermotolerant white rot fungi. Appl Biochem Microbiol 41:662–667

    CAS  Google Scholar 

  • Chander M, Arora DS (2007) Evaluation of some white-rot fungi for their potential to decolourise industrial dyes. Dyes Pigm 72:192–198

    CAS  Google Scholar 

  • Chander M, Arora DS, Bath HK (2004) Biodecolorization of some industrial dyes by white-rot fungi. J Ind Microbiol Biotechnol 31:94–97

    PubMed  CAS  Google Scholar 

  • Chang HC, Bumpus JA (2001) Inhibition of lignin peroxidase-mediated oxidation activity by ethylenediamine tetraacetic acid and N-N-N′-N′-tetramethylenediamine. Proc Natl Sci Counc Rep China Part B Life Sci 25:26–33

    CAS  Google Scholar 

  • Cheng X-B, Jia R, Lip S, Zhu Q, Tu S-Q, Tang W-Z (2007) Studies on the properties and co-immobilization of manganese peroxidase. Chin J Biotechnol 23:90–96

    CAS  Google Scholar 

  • Cho NS, Jarosa-Wilkolazka A, Luterek J, Cho H-Y, Ohga S, Leonowicz A (2006) Effect of fungal laccase and low molecular weight mediators on decolorization of Direct Blue dye. J Fac Agric Kyushu Univ 51:219–225

    CAS  Google Scholar 

  • Chopra P, Singh D, Verma V, Puniya AK (2004) Bioremediation of melanoidin containing dig-ested spent wash from cane-molasses distillery with white rot fungus Coriolus versicolor. Ind J Microbiol 44:197–200

    CAS  Google Scholar 

  • Christian V, Shrivastava R, Shukla D, Modi H, Rajiv B, Vyas M (2005) Mediator role of veratryl alcohol in the lignin peroxidase-catalyzed oxidative decolorization of Remazol Brilliant Blue R. Enzyme Microb Technol 36:426–431

    CAS  Google Scholar 

  • Christiansson M, Stenberg B, Wallenberg LR, Holst O (1998) Reduction of surface sulfur upon microbial devulcanization of rubber materials. Biotechnol Lett 20:637–642

    CAS  Google Scholar 

  • Christiansson M, Stenberg B, Holst O (2000) Toxic additives—a problem for microbial waste rubber desulfurisation. Res Environ Biotechnol 3:11–21

    CAS  Google Scholar 

  • Cullen D, Kersten P (1992) Fungal enzymes for lignocellulose degradation. In: Kinghorn JR, Turner G. Glasgow (eds) Applied molecular genetics of filamentous fungi. Blackie Academic and Professional, Chapman & Hall, pp 100–l31

  • D′Annibale A, Quaratino D, Federici F, Fenice M (2006) Effect of agitation and aeration on the reduction of pollutant load of olive mill wastewater by the white-rot fungus Panus tigrinus. Biochem Eng J 29:243–249

    CAS  Google Scholar 

  • Dhouib A, Ellouz M, Aloui F, Sayadi S (2006) Effect of bioaugmentation of activated sludge on olive mill wastewater detoxification with white-rot fungi. Lett Appl Microbiol 42:405–411

    PubMed  CAS  Google Scholar 

  • Doddapaneni H, Subramanian V, Yadav JS (2005) Physiological regulation, xenobiotic induction, and heterologous expression of P450 monooxygenase gene pc-3 (CYP63A3), a new member of the CYP63 gene cluster in the white-rot fungus Phanerochaete chrysosporium. Curr Microbiol 50:292–298

    PubMed  CAS  Google Scholar 

  • Driessel BV, Christov L (2001) Decolorization of bleach plant effluent by mucoralean and white-rot fungi in a rotating biological contactor reactor. J Biosci Bioeng 92:271–276

    PubMed  CAS  Google Scholar 

  • D′Souza DT, Tiwari R, Sah AK, Raghukumar C (2006) Enhanced production of laccase by a marine fungus during treatment of colored effluents and synthetic dyes. Enzyme Microb Technol 38:504–511

    CAS  Google Scholar 

  • Eaton RA, Hale MDC (1993) Wood: decay, pests and protection. Chapman and Hall, London

    Google Scholar 

  • Eichlerová I, Homolka L, Nerud F (2006) Synthetic dye decolorization capacity of white rot fungus Dichomitus squalens. Biores Technol 97:2153–2159

    Google Scholar 

  • Erkurt EA, Ünyayar A, Kumbur H (2007) Decolorization of synthetic dyes by white rot fungi involving laccase enzyme in the process. Proc Biochem 42:1429–1435

    CAS  Google Scholar 

  • Font X, Caminal G, Gabarrell X, Vicent T (2006) Treatment of toxic industrial wastewater in fluidized and fixed-bed batch reactors with Trametes versicolor: influence of immobilization. Environ Technol 27:845–854

    PubMed  CAS  Google Scholar 

  • Fragoso NM, Parrott JL, Hahn ME, Hodoson PV (1998) Chronic retene exposure causes sustained induction of CYP1A activity and protein in rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem 17:2347–2353

    CAS  Google Scholar 

  • Fu Y, Viraraghavan T (2001) Fungal decolourization of dye wastewater: a review. Biores Technol 79:251–262

    CAS  Google Scholar 

  • Garcia IG, Pena PRJ, Venceslada JLB, Martin AM, Santos MAM, Gomez ER (2004) Removal of phenol compounds from olive mill wastewater using Phanerochaete chrysosporium, Aspergillus niger, Aspergillus terreus and Geotrichum candidum. Proc Biochem 35:751–758

    Google Scholar 

  • Gavril M, Hodson PV (2007) Chemical evidence for the mechanism of the biodecoloration of Amaranth by Trametes versicolor. World J Microbiol Biotechnol 23:103–124

    CAS  Google Scholar 

  • Geng X, Li K, Xu F (2004) Investigation of hydroxamic acids as laccase-mediators for pulp bleaching. Appl Microbiol Biotechnol 64:493–496

    PubMed  CAS  Google Scholar 

  • Gold MH, Alic M (1993) Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Microbiol Rev 57:605–622

    PubMed  CAS  Google Scholar 

  • González T, Terrón MC, Yagüe S, Junca H, Carbajo JM, Zapico EJ, Silva R, Arana-Cuenca A, Téllez A, González AE (2007) Melanoidin-containing wastewaters induce selective laccase gene expression in the white rot fungus Trametes sp. I-62. Res Microbiol. doi: 10.1016/j.resmic.2007.10.005

  • Hakala TK, Lundell T, Galkin S, Maijala P, Kalkkinen S, Hatakka A (2005) Manganese peroxidases, laccase and oxalic acid from the selective white-rot fungus Physisporinus rivulosus grown on spruce wood chips. Enzyme Microb Technol 36:461–468

    CAS  Google Scholar 

  • Hakala TK, Hildén K, Maijala P, Olsson C, Hatakka A (2006) Differential regulation of manganese peroxidases and characterization of two variable MnP encoding genes in the white-rot fungus Physisporinus rivulosus. Appl Microbiol Biotechnol 73:839–849

    PubMed  CAS  Google Scholar 

  • Hatakka A (1994) Lignin-modifying enzymes from selected white-rot fungi: production and role in lignin degradation. FEMS Microbiol Rev 13:125–135

    CAS  Google Scholar 

  • Hatakka A (2001) Biodegradation of lignin. In: Steinbüchel A, Hofrichter M (eds) Biopolymers. Lignin, humic substances, and coal, vol 1. Wiley-VCH, Weinheim, pp 129–180

    Google Scholar 

  • Hirai H, Sugiura M, Kawai S, Nishida T (2005) Characteristics of novel lignin peroxidases produced by white-rot fungus Phanerochaete sordida YK-624. FEMS Microbiol Lett 246:19–24

    PubMed  CAS  Google Scholar 

  • Hofrichter M (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzyme Microb Technol 30:454–466

    CAS  Google Scholar 

  • Honda Y, Watanabe T, Watanabe T (2006) Exclusive overexpression and structure-function analysis of a versatile peroxidase from white-rot fungus, Pleurotus ostreatus. Sustainable Humanosphere 2:2–6

    Google Scholar 

  • Jaouani A, Sayadi S, Vanthournhout M, Penninckx MJ (2003) Potent fungi for decolorization of olive oil mill wastewater. Enzyme Microb Technol 33:802–809

    CAS  Google Scholar 

  • Jaouani A, Tabka MG, Penninckx MJ (2006) Lignin modifying enzymes of Coriolopsis polyzona and their role in olive oil mill wastewaters decolourisation. Chemosphere 62:1421–1430

    PubMed  CAS  Google Scholar 

  • Kalmis E, Sargin S (2004) Cultivation of two Pleurotus species on wheat straw substrates containing olive mill wastewater. Int Biodet Biodeg 53:43–47

    CAS  Google Scholar 

  • Kamitsuji H, Honda Y, Watanabe T, Kuwahara M (2004a) Production and induction of manganese peroxidase isozymes in a white rot fungus Pleurotus ostreatus. Appl Microbiol Biotechnol 65:287–294

    PubMed  CAS  Google Scholar 

  • Kamitsuji H, Honda Y, Watanabe T, Kuwahara M (2005a) Direct oxidation of polymeric substrates by multifunctional manganese peroxidase isozyme from Pleurotus ostreatus without redox mediators. Biochem J 386:387–393

    PubMed  CAS  Google Scholar 

  • Kamitsuji H, Honda Y, Watanabe T, Kuwahara M (2005b) Mn2+ is dispensable for the production of active MnP2 by Pleurotus ostreatus. Biochem Biophys Res Commun 327:871–876

    PubMed  CAS  Google Scholar 

  • Karimi A, Vahabzadeh F, Bonakdarpour B (2006) Use of Phanerochaete chrysosporium immobilized on Kissiris for synthetic dye decolourization: involvement of manganese peroxidase. World J Microbiol Biotechnol 22:1251–1257

    CAS  Google Scholar 

  • Kariminiaae-Hamedaani H-R, Sakurai A, Sakakibara M (2007) Decolorization of synthetic dyes by a new manganese peroxidase-producing white rot fungus. Dyes Pigm 72:157–162

    CAS  Google Scholar 

  • Kiparisis Y, Balch GC, Metcalfe TL, Metcalfe CD (2003) Effects of the isoflavones genistein and equol on the gonadal development of Japanese medaka (Oryzias latipes). Environ Health Perspect 111:1158–1163

    Google Scholar 

  • Kirk TK, Farrell RL (1987) Enzymatic “combustion”: the microbial degradation of lignin. Ann Rev Microbiol 41:465–505

    CAS  Google Scholar 

  • Lacina C, Germin G, Spiros A (2003) Utilization of fungi for biotreatment of new wastewater: a review. Afr J Biotechnol 2:620–635

    Google Scholar 

  • Lan J, Wang F, Huang X-R, Li Y-Z, Qu Y-B, Gao P-J (2006) Studies on the hydrogen peroxide regulated veratryl alcohol mediated oxidation of Pyrogallol red catalyzed by lignin peroxidase. Acta Chimi Sin 64:463–468

    CAS  Google Scholar 

  • Lau CM, Subramaniam A (1991) Recovery and applications of waste solids from natural rubber latex. In: Proceedings of rubber growers conf., Kuala Lumpur, Malaysia, pp 24–26

  • Lee SM, Koo BW, Choi JW, Choi DH, An BS, Jeung EB, Choi IG (2005) Degradation of bisphenol A by white rot fungi Stereum hirsutum and Heterobasidium insulare, and reduction of its estrogenic activity. Biol Pharm Bull 28:201–207

    PubMed  CAS  Google Scholar 

  • Lee JW, Lee SM, Hong EJ, Jeung EB, Kang HY, Kim MK, Choi IG (2006) Estrogenic reduction of styrene monomer degraded by Phanerochaete chrysosporium KFRI20742. J Microbiol 44:177–184

    PubMed  CAS  Google Scholar 

  • Levin L, Papinutti L, Forchiassin F (2004) Evaluation of four Argentinean white rot fungi; their ability to produces lignin-modifyng enzymes and decolorize industrial dyes. Biores Technol 2:169–176

    Google Scholar 

  • Levin L, Forchiassin FF, Viale A (2005) Ligninolytic enzyme production and dye decolorization by Trametes trogii: application of the Plackett–Burman experimental design to evaluate nutritional requirements. Proc Biochem 40:1381–1387

    CAS  Google Scholar 

  • Liu HS, Mead JL, Stacer RG (2000) Environmental effects of recycled rubber in light-fill applications. Rubber Chem Technol 73:551–564

    CAS  Google Scholar 

  • Liu A, Huang X, Song S, Wang D, Lu X, Qu Y, Gao P (2003) Kinetics of the H2O2-dependent ligninase-catalyzed oxidation of veratryl alcohol in the presence of cationic surfactant studied by spectrophotometric technique. Spectrochim Acta Part A Mol Biomol Spectrosc 59:2547–2551

    Google Scholar 

  • Lorenzo M, Moldes D, Sanromán MA (2006) Effect of heavy metals on the production of several laccase isoenzymes by Trametes versicolor and on their ability to decolourise dyes. Chemosphere 63:912–917

    PubMed  CAS  Google Scholar 

  • Lu R, Shen XL, Xia LM (2005) Studies on laccase production by Coriolus versicolor and enzymatic decoloration of dye. Linchan Huaxue Yu Gongye/Chem Ind Forest Prod 25:73–76

    CAS  Google Scholar 

  • Lu L, Zhao M, Wang Y (2007) Immobilization of laccase by alginate-chitosan microcapsules and its use in dye decolorization. World J Microbiol Biotechnol 23:159–166

    CAS  Google Scholar 

  • Maas R, Chaudhari S (2005) Adsorption and biological decolorization of azo dye Reactive Red-2 in semicontinuous anaerobic reactors. Proc Biochem 40:699–705

    CAS  Google Scholar 

  • Mäkelä MR, Galkin S, Hatakka A, Lundell TK (2005) Production of organic acids and oxalate decarboxylase inlignin-degrading white rot fungi. Enzyme Microb Technol 30:542–549

    Google Scholar 

  • Mäkelä MR, Hildén KS, Hakala TK, Hatakka A, Lundell TK (2006) Expression and molecular properties of a new laccase of the white rot fungus Phlebia radiata grown on wood. Curr Genet 50:323–333

    PubMed  Google Scholar 

  • Martínez AT (2002) Molecular biology and structure-function of lignin-degrading heme peroxidases. Enzyme Microb Technol 30:425–444

    Google Scholar 

  • Máximo C, Costa-Ferreira M (2004) Decolorization of reactive textile dyes by Irpex lacteus and lignin modifying enzymes. Proc Biochem 39:1475–1479

    Google Scholar 

  • Mazmanci MA, Ünyayar A (2005) Decolourisation of Reactive Black 5 by Funalia trogii immobilised on Luffa cylindrica sponge. Proc Biochem 40:337–342

    CAS  Google Scholar 

  • Mester T, Field JA (1998) Characterization of a novel manganese peroxidase-lignin per-oxidase hybrid isozyme produced by Bjerkandera species strain BOS55 in the absence of manganese. J Biol Chem 273:15412–15417

    PubMed  CAS  Google Scholar 

  • Michniewicz A, Ullrich R, Ledakowicz S, Hofrichter M (2006) The white-rot fungus Cerrena unicolor strain 137 produces two laccase isoforms with different physico-chemical and catalytic properties. Appl Microbiol Biotechnol 69:682–688

    PubMed  CAS  Google Scholar 

  • Michniewicz A, Ledakowicz S, Ullrich R, Hofrichter M (2008) Kinetics of the enzymatic decolorization of textile dyes by laccase from Cerrena unicolor. Dyes Pigm 77:295–302

    CAS  Google Scholar 

  • Minussi RC, Pastore GM, Durán N (2007) Laccase induction in fungi and laccase/N–OH mediator systems applied in paper mill effluent. Biores Technol 98:158–164

    CAS  Google Scholar 

  • Moreira PR, Bouillenne F, Almeida-Vara E, Xavier Malcata F, Frère JM, Duarte JC (2006) Purification, kinetics and spectral characterisation of a new versatile peroxidase from a Bjerkandera sp. isolate. Enzyme Microb Technol 38:28–33

    CAS  Google Scholar 

  • Murugesan K, Arulmani M, Nam I-H, Kim Y-M, Chang Y-S, Kalaichelvan PT (2006) Purification and characterization of laccase produced by a white rot fungus Pleurotus sajor-caju under submerged culture condition and its potential in decolorization of azo dyes. Appl Microbiol Biotechnol 72:939–946

    PubMed  CAS  Google Scholar 

  • Nagai M, Sato T, Watanabe H, Saito K, Kawata M, Enei H (2002) Purification and characterization of an extracellular laccase from the edible mushroom Lentinula edodes, and decolorization of chemically different dyes. Appl Microbiol Biotechnol 60:327–335

    PubMed  CAS  Google Scholar 

  • Nilsson I, Moller A, Mattiasson B, Rubindamayugi MST, Welander U (2006) Decolorization of synthetic and real textile wastewater by the use of white-rot fungi. Enzyme Microb Technol 38:94–100

    CAS  Google Scholar 

  • Ozsoy HD, Unyayar A, Mazmanci MA (2005) Decolourisation of reactive textile dyes Drimarene Blue X3LR and Remazol Brilliant Blue R by Funalia trogii ATCC 200800. Biodegradation 16:195–204

    PubMed  Google Scholar 

  • Pazarlioglu NK, Sariisik M, Telefoncu A (2005) Laccase production by Trametes versicolor and application to denim washing. Proc Biochem 40:1673–1678

    CAS  Google Scholar 

  • Pogni R, Baratto MC, Giansanti S, Teutloff C, Verdin J, Valderrama B, Lendzian F, Lubitz W, Vazquez-Duhalt R, Basosi R (2005) Tryptophan-based radical in the catalytic mechanism of versatile peroxidase from Bjerkandera adusta. Biochemistry 44:4267–4274

    PubMed  CAS  Google Scholar 

  • Pogni R, Baratto MC, Teutloff C, Giansanti S, Ruiz-Dueñas FJ, Choinowski T, Piontek K, Martínez AT, Lendzian F, Basosi R (2006) A tryptophan neutral radical in the oxidized state of versatile peroxidase from Pleurotus eryngii: a combined multifrequency EPR and density functional theory study. J Biol Chem 281:9517–9526

    PubMed  CAS  Google Scholar 

  • Pogni R, Teutloff C, Lendzian F, Basosi R (2007) Tryptophan radicals as reaction intermediates in versatile peroxidases: multifrequency EPR, ENDOR and density functional theory studies. Appl Magn Reson 31:509–526

    Article  CAS  Google Scholar 

  • Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33

    PubMed  CAS  Google Scholar 

  • Quaratino D, Federici F, Petruccioli M, Fenice M, D′Annibale A (2007) Production, purification and partial characterisation of a novel laccase from the white-rot fungus Panus tigrinus CBS577.79. Antonie Van Leeuwenhoek Int J Genet Mol Microbiol 91:57–69

    CAS  Google Scholar 

  • Raghukumar C (2002) Bioremediation of colored pollutants by terrestrial versus facultative marine fungi. In: Hyde KD (ed) Fungi in marine environments. Fungal Diversity Research Series, vol 7. pp 317–344

  • Raghukumar C, Rivonkar G (2001) Decolorization of molasses spent wash by the white-rot fungus Flavodon flavus, isolated from a marine habitat. Appl Microbiol Biotechnol 55:510–514

    PubMed  CAS  Google Scholar 

  • Raghukumar C, Mohandass C, Kamat S, Shailaja MS (2004) Simultaneous detoxification and decolorization of molasses spent wash by the immobilized white-rot fungus Flavodon flavus isolated from a marine habitat. Enzyme Microb Technol 35:197–202

    CAS  Google Scholar 

  • Ramos-Cormenzana A, Monteoliva-Sanchez M, Lopez MJ (1995) Bioremediation of alpechin. Intl Biodet Biodeg 35:249–268

    CAS  Google Scholar 

  • Reddy CA (1995) The potential for white-rot fungi in the treatment of pollutants. Curr Opin Biotechnol 6:320–328

    CAS  Google Scholar 

  • Revankar MS, Lele SS (2007) Synthetic dye decolorization by white rot fungus, Ganoderma sp. WR-1. Biores Technol 98:775–780

    CAS  Google Scholar 

  • Rodakiewicz-Nowak J, Jarosz-Wilkołazka A, Luterek J (2006) Catalytic activity of versatile peroxidase from Bjerkandera fumosa in aqueous solutions of water-miscible organic solvents. Appl Catal A Gen 308:56–61

    CAS  Google Scholar 

  • Ruiz-Dueñas FJ, Morales M, Pérez-Boada M, Choinowski T, Martínez MJ, Piontek K, Martínez ÁT (2007) Manganese oxidation site in Pleurotus eryngii versatile peroxidase: a site-directed mutagenesis, kinetic, and crystallographic study. Biochemistry 46:66–77

    PubMed  Google Scholar 

  • Salony SM, Bisaria VS (2006) Production and characterization of laccase from Cyathus bulleri and its use in decolorization of recalcitrant textile dyes. Appl Microbiol Biotechnol 71:646–653

    PubMed  CAS  Google Scholar 

  • Sanghi R, Dixit A, Guha S (2006) Sequential batch culture studies for the decolorisation of reactive dye by Coriolus versicolor. Biores Technol 97:396–400

    CAS  Google Scholar 

  • Sanjust E, Pompei R, Resciggno A, Augusto R, Ballero M (1991) Olive milling wastewater as medium for growth of four Pleurotus species. Appl Biochem Biotechnol 31:223–235

    Article  PubMed  CAS  Google Scholar 

  • Selvam K, Swaminathan K, Myung Hoon Song MH, Chae K (2002) Biological treatment of a pulp and paper industry effluent by Fomes lividus and Trametes versicolor. World J Microbiol Biotechnol 18:523–526

    CAS  Google Scholar 

  • Selvam K, Swaminathan K, Rasappan K, Rajendran R, Pattabhi S (2006) Decolourization and dechlorination of a pulp and paper industry effluent by Thelephora sp. Ecol Environ Conserv 12:223–226

    CAS  Google Scholar 

  • Shah V, Nerud F (2002) Lignin degrading system of white-rot fungi and its exploitation for dye decolorization. Can J Microbiol 48:457–870

    Google Scholar 

  • Shrivastava R, Christian V, Vyas BRM (2005) Enzymatic decolorization of sulfonphthalein dyes. Enzyme Microb Technol 36:333–337

    CAS  Google Scholar 

  • Soares A, Jonasson K, Terrazas E, Guieysse B, Mattiasson B (2005) The ability of white-rot fungi to degrade the endocrine-disrupting compound nonylphenol. Appl Microbiol Biotechnol 66:719–725

    PubMed  CAS  Google Scholar 

  • Soares A, Guieysse B, Mattiasson B (2006) Influence of agitation on the removal of nonylphenol by the white-rot fungi Trametes versicolor and Bjerkandera sp. BOL 13. Biotechnol Lett 28:139–143

    PubMed  CAS  Google Scholar 

  • Sundramoorthy M, Yougs HL, Gold MH, Poulos TL (2005) High resolution crystal structure of manganese peroxidase:substrate and inhibitor complexes. Biochemistry 44:6463–6470

    Google Scholar 

  • Suzuki K, Hirai H, Murata H, Nishida T (2003) Removal of estrogenic activities of 17b-estradiol and ethinylestradiol by ligninolytic enzymes from white rot fungi. Water Res 37:1972–1975

    PubMed  CAS  Google Scholar 

  • Svobodová K, Majcherczyk A, Novotný C, Kües U (2008) Implication of mycelium-associated laccase from Irpex lacteus in the decolorization of synthetic dyes. Biores Technol 99:463–471

    Google Scholar 

  • Tamagawa Y, Hirai H, Kawai S, Nishida T (2005) Removal of estrogenic activity of endocrine-disrupting genistein by ligninolytic enzymes from white rot fungi. FEMS Microb Lett 244:93–98

    CAS  Google Scholar 

  • Tavcar M, Svobodová K, Kuplenk J, Novotný C, Pavko A (2006) Biodegradation of azo dye RO16 in different reactors by immobilized Irpex lacteus. Acta Chim Slovenica 53:338–343

    CAS  Google Scholar 

  • Teunissen PJM, Field JA (1998) 2-Chloro-1,4-dimethoxybenzene as a mediator of lignin peroxidase catalyzed oxidations. FEBS Lett 439:219–223

    PubMed  CAS  Google Scholar 

  • Tinoco R, Verdin J, Vazquez-Duhalt R (2007) Role of oxidizing mediators and tryptophan 172 in the decoloration of industrial dyes by the versatile peroxidase from Bjerkandera adusta. J Mol Catal B Enzyme 46:1–7

    CAS  Google Scholar 

  • Toh Y, Jia J, Yen L, Obbard JP, Ting Y (2003) Decolorization of azo dyes by white-rot fungi (WRF) isolated in Singapore. Enzyme Microb Technol 33:569–575

    CAS  Google Scholar 

  • Tsioulpas A, Dimou D, Iconomou D, Aggelis G (2002) Phenolic removal in olive oil mill wastewater by strains of Pleurotus spp. in respect to their phenol oxidase (laccase) activity. Biores Technol 84:251–257

    CAS  Google Scholar 

  • Tsukihara T, Honda Y, Watanabe T, Watanabe T (2006) Molecular breeding of white rot fungus Pleurotus ostreatus by homologous expression of its versatile peroxidase MnP2. Appl Microbiol Biotechnol 71:114–120

    PubMed  CAS  Google Scholar 

  • Tsutsumi Y, Haneda T, Nishida T (2001) Removal of estrogenic activities of bisphenol A and nonylphenol by oxidative enzymes from lignin-degrading basidiomycetes. Chemosphere 42:271–276

    PubMed  CAS  Google Scholar 

  • Tychanowicz GK, Zilly A, Giatti C, Marques de Souza M, Peralta RM (2004) Decolorization of industrial dyes by solid-state cultures of Pleurotus pulmonarius. Proc Biochem 39:855–859

    CAS  Google Scholar 

  • Tychanowicz GK, De Souza DF, Souza CGM, Kadowaki MK, Peralta RM (2006) Copper improves the production of laccase by the white-rot fungus Pleurotus pulmonarius in solid state fermentation. Brazil Arch Biol Technol 49:699–704

    CAS  Google Scholar 

  • Ullrich R, Le MH, Nguyen LD, Hofrichter M (2005) Laccase from the medicinal mushroom Agaricus blazei: production, purification and characterization. Appl Microbiol Biotechnol 67:357–363

    PubMed  CAS  Google Scholar 

  • Ürek RO, Pazarlioglu NK (2004) Purification and partial characterization of manganese peroxidase from immobilized Phanerochaete chrysosporium. Proc Biochem 39:2061–2068

    Google Scholar 

  • Ürek RO, Pazarlioglu NK (2005) Production and stimulation of manganese peroxidase by immobilized Phanerochaete chrysosporium. Proc Biochem 40:83–87

    Google Scholar 

  • Vahabzadeh F, Mehranian M, Saatari AR (2004) Color removal ability of Phanerochaete chrysosporium in relation to lignin peroxidase and manganese peroxidase produced in molasses wastewater. World J Microbiol Biotechnol 20:859–864

    CAS  Google Scholar 

  • Verdín J, Pogni R, Baeza A, Baratto MC, Basosi RB, Vázquez-Duhalt R (2006) Mechanism of versatile peroxidase inactivation by Ca2+ depletion. Biophys Chem 121:163–170

    PubMed  Google Scholar 

  • Verma P, Madamwar D (2002) Production of lignolytic enzymes for dye decolorization by co-cultivation of white rot fungi Pleurotus ostreatus and Phanerochaete chrysosporium under solid state fermentation. Appl Biochem Biotechnol 102–103:109–118

    PubMed  Google Scholar 

  • Watanabe K (2001) Microorganisms relevant to bioremediation. Curr Opin Biotechnol 12:237–241

    PubMed  CAS  Google Scholar 

  • Watanabe T, Hattori T, Tengku S, Shimada M (2005) Purification and characterization of NAD-dependent formate dehydrogenase from the white-rot fungus Ceriporiopsis subvermispora and a possible role of the enzyme in oxalate metabolism. Enzyme Microb Technol 37:68–75

    CAS  Google Scholar 

  • Wells A, Teria M, Eve T (2006) Green oxidations with laccase-mediator systems. Biochem Soc Trans 34:304–308

    PubMed  CAS  Google Scholar 

  • Wesenberg D, Kyriakides I, Agathos SN (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv 22:161–187

    PubMed  CAS  Google Scholar 

  • Yang JS, Yuan HL, Chen WX (2004) Studies on extracellular enzymes of lignin degrading fungus Penicillium sp. P6. China Environ Sci 24:24–27

    Google Scholar 

  • Yu G, Wen X, Li R, Qian Y (2006) In vitro degradation of a reactive azo dye by crude ligninolytic enzymes from non-immersed liquid culture of Phanerochaete chrysosporium. Proc Biochem 41:1987–1993

    CAS  Google Scholar 

  • Zervakis G, Yiatras P, Balis C (1996) Edible mushrooms from olive oil mill waste. Int Biodet Biodeg 38:237–243

    Google Scholar 

  • Zhao X, Hardin IR (2007) HPLC and spectrophotometric analysis of biodegradation of azo dyes by Pleurotus ostreatus. Dyes Pigm 73:322–325

    CAS  Google Scholar 

  • Zhao X, Yiping Lu Y, Hardin I (2005) Determination of biodegradation products from sulfonated dyes by Pleurotus ostreatus using capillary electrophoresis coupled with mass spectrometry. Biotechnol Lett 27:69–72

    PubMed  CAS  Google Scholar 

  • Zhao X, Hardin IR, Hwang H-M (2006) Biodegradation of a model azo disperse dye by the white rot fungus Pleurotus ostreatus. Int Biodet Biodeg 57:1–6

    CAS  Google Scholar 

  • Zouari-Mechichi H, Mechichi T, Dhouib A, Sayadi S, Martínez AT, Martínez MJ (2006) Laccase purification and characterization from Trametes trogii isolated in Tunisia: decolorization of textile dyes by the purified enzyme. Enzyme Microb Technol 39:141–148

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Asgher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asgher, M., Bhatti, H.N., Ashraf, M. et al. Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system. Biodegradation 19, 771–783 (2008). https://doi.org/10.1007/s10532-008-9185-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-008-9185-3

Keywords

Navigation