Skip to main content

Advertisement

Log in

Leaf-litter herpetofaunal richness, abundance, and community assembly in mono-dominant plantations and primary forest of northeastern Costa Rica

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Given current deforestation and land-use change in species-rich tropical forests, a pressing need in conservation biology is to understand how converted, human-modified landscapes support biodiversity. Here, we measured the species richness, abundance, and community composition of amphibians and reptiles in reference primary forest and mono-dominant plantations of three native tree species (Pentaclethra macroloba, Virola koschnyi, Vochysia guatemalensis) at La Selva Biological Station in the Caribbean lowlands of northern Costa Rica. Because these plantation species generate markedly different forest-floor habitats, we hypothesized that tree species would support different assemblages of leaf-litter herpetofauna. Primary forest, Virola, and Vochysia supported greater richness of frogs than Pentaclethra. Frog densities were significantly lower in Pentaclethra and Vochysia than in nearby primary forest. Using non-metric multidimensional scaling and permutational multivariate analysis of variance, we found Pentaclethra to support significantly different assemblages of frogs and lizards than primary forest reference sites, while Vochysia supported a unique assemblage of frogs. Our results suggest that some tree species plantations can support herpetofaunal assemblages comparable to primary forest in richness, community assembly, and abundance. While herpetofaunal community ecology varies among plantation species, our study provides a compelling example of how plantation landscapes can facilitate the restoration of native fauna on degraded landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alford RA, Richards SJ (1999) Global amphibian declines: a problem in applied ecology. Annu Rev Ecol Syst 30:133–165

    Article  Google Scholar 

  • Bawa KS, Seidler R (1998) Natural forest management and conservation of biodiversity in tropical forests. Conserv Biol 12:46–55

    Article  Google Scholar 

  • Bell KE, Donnelly MA (2006) Influence of forest fragmentation on community structure of frogs and lizards in northeastern Costa Rica. Conserv Biol 20:1750–1760

    Article  PubMed  Google Scholar 

  • Bhagwat SA, Willis KJ, Birks HJB, Whitaker RJ (2008) Agroforestry: a refuge for tropical biodiversity? Trends Ecol Evol 23:261–267

    Article  PubMed  Google Scholar 

  • Bickford D, Howard SD, Ng DJJ, Sheridan JA (2010) Impacts of climate change on the amphibians and reptiles of Southeast Asia. Biodivers Conserv 19:1043–1062

    Article  Google Scholar 

  • Blaustein AR, Kiesecker JM (2002) Complexity in conservation: lessons from the global decline of amphibian populations. Ecol Lett 5:597–608

    Article  Google Scholar 

  • Bradshaw CJA, Sodhi NS, Brook BW (2009) Tropical turmoil: a biodiversity tragedy in progress. Front Ecol Environ 7:79–87

    Article  Google Scholar 

  • Chazdon RL, Harvey CA, Komar O, Griffith DM, Ferguson BG, Martínez-Ramos M, Morales H, Nigh R, Soto-Pinto L, van Breugel M, Philpott SM (2009) Beyond reserves: a research agenda for conserving biodiversity in human-modified tropical landscapes. Biotropica 41:142–153

    Article  Google Scholar 

  • Collins JP, Storfer A (2003) Global amphibian declines: sorting the hypotheses. Divers Distrib 9:89–98

    Article  Google Scholar 

  • Colwell RK (2004) Estimates, version 7: statistical estimation of species richness and shared species from samples (Software and User’s Guide). Freeware for Windows and Mac Os

  • Crump ML, Scott NJ (1994) Visual encounter surveys. In: Heyer WR, Donnelly MA, McDiarmid RW, Hayek LC, Foster MS (eds) Measuring and monitoring biological diversity: standard methods for amphibians. Smithsonian Institution Press, Washington DC

    Google Scholar 

  • Cushmann SA (2006) Effects of habitat loss and fragmentation on amphibians: a review and prospectus. Biol Conserv 128:231–240

    Article  Google Scholar 

  • Doan TM (2003) Which methods are most effective for surveying rain forest herpetofauna? J Herpetol 37:72–81

    Article  Google Scholar 

  • Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366

    Google Scholar 

  • Fauth JE, Crother BI, Slowinski JB (1989) Elevational patterns of species richness, evenness, and abundance of the Costa Rican leaf-litter herpetofauna. Biotropica 31:669–674

    Google Scholar 

  • Frankie GW, Baker HG, Opler PA (1974) Comparative phenological studies of trees in tropical wet and dry forests in the lowlands of Costa Rica. J Ecol 62:881–919

    Article  Google Scholar 

  • Freedman B, Zelazny V, Beaudette D, Fleming T, Flemming S, Forbes G, Gerrow JS, Johnson G, Woodley S (1996) Biodiversity implications of changes in the quantity of dead organic matter in managed forests. Environ Rev 4:238–265

    Article  Google Scholar 

  • Gardner TA, Barlow J, Peres CA (2007a) Paradox, presumption and pitfalls in conservation biology: the importance of habitat change for amphibians and reptiles. Biol Conserv 138:166–179

    Google Scholar 

  • Gardner TA, Ribeiro-Júnior MA, Barlow J, Ávila-Pires TCS, Hoogmoed MS, Peres CA (2007b) The value of primary, secondary, and plantation forests for a Neotropical herpetofauna. Conserv Biol 21:775–787

    Article  PubMed  Google Scholar 

  • Gardner TA, Barlow J, Chazdon R, Ewers RM, Harvey CA, Peres CA, Sodhi NS (2009) Prospects for tropical forest biodiversity in a human-modified world. Ecol Lett 12:561–582

    Article  PubMed  Google Scholar 

  • Gibbons JW, Scott DE, Ryan TJ, Buhlmann KA, Tuberville TD, Metts BS, Greene JL, Mills T, Leiden Y, Poppy S, Winne CT (2000) The global decline of reptiles, déjà vu amphibians. Bioscience 50:653–667

    Article  Google Scholar 

  • Gotelli N, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391

    Article  Google Scholar 

  • Guyer C (1988) Food supplementation in a tropical mainland anole, Norops humilis: effects on individuals. Ecology 69:362–369

    Article  Google Scholar 

  • Guyer C (1994) The reptile fauna: diversity and ecology. In: McDade LA, Bawa K, Hespenheide H, Hartshorn G (eds) La Selva: ecology and natural history of a neotropical rainforest. University of Chicago Press, Chicago, pp 210–216

    Google Scholar 

  • Hartley MJ (2002) Rationale and methods for conserving biodiversity in plantation forests. For Ecol Manag 155:81–95

    Article  Google Scholar 

  • Hartshorn GS (1972) The ecological life history and population dynamics of Pentaclethra macroloba, a tropical wet forest dominant, and Stryphnodendron excelsum, an occasional associate. University of Washington, Dissertation

  • Hartshorn GS (1983) Introduction. In: Janzen DH (ed) Costa Rican natural history. University of Chicago Press, Chicago, pp 118–157

    Google Scholar 

  • Heatwole HF (2012) Quadrat sampling. In: Foster MS, Guyer C, Gibbons JW, Chernoff N, McDiarmid RW (eds) Reptile biodiversity: standard methods for inventory and monitoring. University of California Press, Berkeley, pp 220–226

    Google Scholar 

  • Heinen JT (1992) Comparisons of the leaf-litter herpetofauna in abandoned cacao plantations and primary rain forest in Costa Rica: some implications for faunal restoration. Biotropica 24:431–439

    Article  Google Scholar 

  • Heyer WR, Donnelly MA, McDiarmid RW, Hayek LC, Foster MS (1994) Measuring and monitoring biological diversity: standard methods for amphibians. Smithsonian Institution Press, Washington DC

    Google Scholar 

  • Kleber M, Schwendenmann L, Veldkamp E, Röbner J, Jahn R (2007) Halloysite versus gibbsite: silicon cycling as a pedogenetic process in two lowland Neotropical rain forest soils of La Selva, Costa Rica. Geoderma 138:1–11

    Article  CAS  Google Scholar 

  • Lieberman SS (1986) Ecology of the leaf-litter herpetofauna of a Neotropical rainforest: La Selva, Costa Rica. Acta Zool Mex 15:1–72

    Google Scholar 

  • Lieberman M, Lieberman D (2007) Nearest-neighbor tree species combinations in tropical forest: the role of chance, and some consequences of high diversity. Oikos 116:377–386

    Article  Google Scholar 

  • Lovich RE, Hayes WK, Mushinsky H, Rodda GH (2012) Transect surveys, including line distance. In: McDiarmid RW, Foster MS, Guyer C, Gibbons JW, Chernoff N (eds) Reptile biodiversity: standard methods for inventory and monitoring. University of California Press, Berkeley, pp 227–234

    Google Scholar 

  • Lugo AE (1997) The apparent paradox of reestablishing species richness on degraded lands with tree monocultures. For Ecol Manag 99:9–19

    Article  Google Scholar 

  • Mazerolle MJ, Bailey LL, Kendall WL, Royle JA, Converse SJ, Nichols JD (2007) Making great leaps forward: accounting for detectability in herpetological field studies. J Herpetol 41:672–689

    Article  Google Scholar 

  • McDade LA, Hartshorn GS (1994) La Selva biological station. In: McDade LA, Bawa KS, Hespenheide HA, Hartshorn GS (eds) La Selva: ecology and natural history of a neotropical rainforest. The University of Chicago Press, Chicago, pp 6–14

    Google Scholar 

  • Pawar SS, Rawat GS, Choudhury BC (2004) Recovery of frog and lizard communities following primary habitat alteration in Mizoram, Northeast India. BMC Ecol 4:10

    Article  PubMed  Google Scholar 

  • Pearman PB, Velasco AM, López A (1995) Tropical amphibian monitoring: a comparison of methods for detecting inter-site variation in species’ composition. Herpetologica 51:325–337

    Google Scholar 

  • Pineda E, Halffter G (2004) Species diversity and habitat fragmentation: frogs in a tropical montane landscape in Mexico. Biol Conserv 117:499–508

    Article  Google Scholar 

  • Pounds JA, Crump ML (1994) Amphibian declines and climate disturbance: the case of the golden toad and the harlequin frog. Conserv Biol 8:72–85

    Article  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna. http://www.R-project.org

  • Raich JW, Russell AE, Bedoya-Arrieta R (2007) Lignin and enhanced litter turnover in tree plantations of lowland Costa Rica. For Ecol Manag 239:128–135

    Article  Google Scholar 

  • Reider KE, Carson WP, Donnelly MA (2013) Effects of collared peccary (Pecari tajacu) exclusion on leaf litter amphibians and reptiles in Neotropical wet forest, Costa Rica. Biol Conserv 163:90–98

    Article  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 263:223–225

    Article  Google Scholar 

  • Rodda GH, Campbell EW (2002) Distance sampling of forest snakes and lizards. Herp Rev 33:271–274

    Google Scholar 

  • Rothermel BB, Semlitsch RD (2002) An experimental investigation of landscape resistance of forest versus old-field habitats to emigrating juvenile amphibians. Conserv Biol 16:1324–1332

    Article  Google Scholar 

  • Russell AE, Raich JW (2012) Rapidly growing tropical trees mobilize remarkable amounts of nitrogen in ways that differ surprisingly among species. Proc Natl Acad Sci 109:10398–10402

    Article  PubMed  CAS  Google Scholar 

  • Russell AE, Raich JW, Valverde-Barrantes OJ, Fisher RF (2007) Tree species effects on soil properties in experimental plantations in tropical moist forest. Soil Sci Soc Am J 71:1389–1397

    Article  CAS  Google Scholar 

  • Russell AE, Raich JW, Bedoya R, Valverde-Barrantes O, González E (2010) Impacts of individual tree species on carbon dynamics in a moist tropical forest environment. Ecol Appl 20:1087–1100

    Article  PubMed  Google Scholar 

  • Sanford RL Jr, Paaby P, Luvall JC, Phillips E (1994) Climate, geomorphology, and aquatic systems. In: McDade LA, Bawa KS, Hespenheide HA, Hartshorn GS (eds) La Selva: ecology and natural history of a neotropical rain forest. University of Chicago Press, Chicago, pp 19–33

    Google Scholar 

  • Scott NJ Jr (1976) The abundance and diversity of the herpetofaunas of tropical forest litter. Biotropica 8:41–58

    Article  Google Scholar 

  • Seebacher F, Alford RA (2002) Shelter microhabitats determine body temperature and dehydration rates of a terrestrial amphibian (Bufo marinus). J Herpetol 36:69–75

    Google Scholar 

  • Sodhi NS, Koh LP, Clements R, Wanger TC, Hill JK, Hamer KC, Clough Y, Tscharntke T, Posa MRC, Lee TM (2010) Conserving Southeast Asian forest biodiversity in human-modified landscapes. Biol Conserv 143:2375–2384

    Article  Google Scholar 

  • Steen D, Guyer C, Smith L (2012) A case study of relative abundance in snakes. In: McDiarmid RW, Foster MS, Guyer C, Gibbons JW, Chernoff N (eds) Reptile biodiversity: standard methods for inventory and monitoring. University of California Press, Berkeley, pp 287–294

    Google Scholar 

  • Stuart SM, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions. Science 306:1783–1786

    Article  PubMed  CAS  Google Scholar 

  • Urbina-Cardona JN, Olivares-Pérez M, Reynoso VH (2006) Herpetofauna diversity and microenvironment correlates across a pasture-edge-interior ecotone in tropical rainforest fragments in the Los Tuxtlas Biosphere Reserve of Veracruz, Mexico. Biol Conserv 132:61–75

    Article  Google Scholar 

  • von May R, Jacobs JM, Santa-Cruz R, Valdivia J, Huamán JM, Donnelly MA (2010) Amphibian community structure as a function of forest type. J Trop Ecol 26:509–519

    Article  Google Scholar 

  • Vonesh JR (2001) Patterns of richness and abundance in a tropical African leaf-litter herpetofauna. Biotropica 33:502–510

    Google Scholar 

  • Watling JI (2005) Edaphically-biased distributions of amphibians and reptiles in a lowland tropical rainforest. Stud Neotrop Fauna E 40:15–21

    Article  Google Scholar 

  • Whitfield SM, Donnelly MA (2006) Ontogenetic and seasonal variation in diets of a Costa Rican leaf-litter herpetofauna. J Trop Ecol 22:409–417

    Article  Google Scholar 

  • Whitfield SM, Bell KE, Philippi T, Sasa M, Bolaños F, Chaves G, Savage JM, Donnelly MA (2007) Amphibian and reptile declines over 35 years at La Selva, Costa Rica. Proc Natl Acad Sci 104:8352–8356

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the staff of La Selva Biological Station and the ECOS project (notably, A.E. Russell, E. Paniagua, and R. Bedoya). We also thank B. Shapiro, R. Mata, J. Stynoski, S. Reilly, D. Miles, G. DiRenzo, M. Donnelly, L. Linhoff, D. Steen, C. Murray, C. Guyer, and M. Isola for field help, project advice, and constructive comments on the manuscript. We also thank two anonymous reviewers for providing helpful comments on the manuscript. The National Science Foundation Research Experience for Undergraduates program, the Ohio University Provost Undergraduate Research Fund, and the Society for the Study of Amphibians and Reptiles provided financial support. This study complied with the animal care guidelines of OTS, Florida International University IACUC Permit 09-016, and MINAET Resolución #145-2009-SINAC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Folt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Folt, B., Reider, K.E. Leaf-litter herpetofaunal richness, abundance, and community assembly in mono-dominant plantations and primary forest of northeastern Costa Rica. Biodivers Conserv 22, 2057–2070 (2013). https://doi.org/10.1007/s10531-013-0526-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-013-0526-0

Keywords

Navigation