Skip to main content

Advertisement

Log in

Patterns of rare woody species richness: the influence of environment, landscape attributes and spatial structure across different spatial scales

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the relative contributions of the environment, landscape patterns, and spatial structure to explaining the variation in richness of rare woody species at three levels of rarity (low, medium, and high) and at different grain sizes and spatial extents. We used herbarium records of 195 rare woody species to quantify species richness—overall and for three levels of rarity—of the Yucatan Peninsula, Mexico. We assessed relationships between rare species richness and different sets of explanatory variables (environmental, landscape patterns, and spatial structure of sampling units) using linear regression and variation partitioning analyses at three grain sizes (625, 400, and 225 km2). We also conducted a principle coordinates of neighbor matrices analysis to allow interpretation of the results in terms of different spatial extents. The percentage of variation in rare species richness explained by the models was highest for the largest grain size and spatial extent. At the larger extents, rare species richness was explained mainly by the environment, whereas landscape patterns played a more prominent role at the local extent. Landscape patterns also contributed more to explaining species richness at low to medium levels of rarity, whereas the richness of extremely rare species was better explained by spatial structure. We conclude that the relative contribution of the factors explaining the variation of rare species richness depends on both grain and extent, as well as on the level of rarity. These results underscore the importance of considering the different components of scale (grain and extent) as well as different levels of species rarity in order to better understand the patterns of distribution of rare species richness and to be able to frame appropriate conservation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Boone RB, Krohn WB (2000) Partitioning sources of variation in vertebrate species richness. J Biogeogr 27:457–470

    Article  Google Scholar 

  • Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Model 153:51–68

    Article  Google Scholar 

  • Borcard D, Legendre P, Avois-Jacquet C, Tuomisto H (2004) Dissecting the spatial structure of ecological data at multiple scales. Ecology 85:1826–1832

    Article  Google Scholar 

  • Caiafa AN, Martins FR (2010) Forms of rarity of tree species in the southern Brazilian Atlantic rainforest. Biodivers Conserv 19:2597–2618

    Article  Google Scholar 

  • Carpenter G, Gillison A, Winter J (1993) DOMAIN: a flexible modelling procedure for mapping potential distributions of plants and animals. Biodivers Conserv 2:667–680

    Article  Google Scholar 

  • Condit R, Pitman N, Leight EJ, Chave J, Terborgh J, Foster RB, Nuñez P, Aguilar S, Valencia R, Villa G, Muller-Landau HC, Losos E, Hubbell S (2002) Β-diversity in tropical forest trees. Science 295:666–669

    Article  PubMed  CAS  Google Scholar 

  • Cottenie K (2005) Integrating environmental and spatial processes in ecological community dynamics. Ecol Lett 8:1175–1182

    Article  PubMed  Google Scholar 

  • Currie DJ (1991) Energy and large-scale patterns of animal-and plant-species richness. Am Nat 137:27–49

    Article  Google Scholar 

  • Dale M, Fortin MJ (2002) Spatial autocorrelation and statistical test in ecology. Ecoscience 9:162–167

    Google Scholar 

  • Dray S, Legendre P, Peres-Neto PR (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol Model 196:483–493

    Article  Google Scholar 

  • Ferrusquia-Villafranca I (1993) Geology of Mexico: a synopsis. In: Ramamoorthy TP, Bye R, Lot A, Fa J (eds) Biological diversity of Mexico: origins and distribution. Oxford University Press, New York, p 107

    Google Scholar 

  • Field R, Hawkins BA, Cornell HV, Currie DJ, Diniz-Filho JAF, Guégan JF, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T (2009) Spatial species-richness gradients across scales: a meta-analysis. J Biogeogr 36:132–147

    Article  Google Scholar 

  • Flores JS, Espejel IC (1994) Tipos de Vegetación en la Península de Yucatán. Universidad Autónoma de Yucatán, Mérida

    Google Scholar 

  • Fraser RH (1998) Vertebrate species richness at the mesoscale: relative roles of energy and heterogeneity. Glob Ecol Biogeogr Lett 7:215–220

    Article  Google Scholar 

  • García G, Secaira F (2006) Una Visión para el Futuro: Cartografía de las Selvas Maya, Zoque y Olmeca. En Conservancy, P.P.D.Y. T.N. Plan Ecorregional de las Selvas Maya, Zoque y Olmeca, México

  • García CX, Rodríguez B, Chavelas J (1996) Evaluación de áreas afectadas por el huracán Gilberto e incendios forestales en Quintana Roo. INIFAP, Mérida

    Google Scholar 

  • Gaston KJ (1994) Rarity. Chapman and Hall, London

    Book  Google Scholar 

  • Gaston KJ (2000) Global patterns in biodiversity. Nature 405:220–227

    Article  PubMed  CAS  Google Scholar 

  • Goerck JM (1997) Patterns of rarity in the birds of the Atlantic forest of Brazil. Conserv Biol 11:112–118

    Article  Google Scholar 

  • Gravel D, Canham D, Beaudet M, Messier C (2006) Reconciling niche and neutrality: the continuum hypothesis. Ecol Lett 9:399–409

    Article  PubMed  Google Scholar 

  • Grubb PJ (1977) The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biol Rev 52:107–145

    Article  Google Scholar 

  • Guariguata MR, Ostertag R (2001) Neotropical secondary forest succession: changes in structural and functional characteristics. For Ecol Manage 148:185–206

    Article  Google Scholar 

  • Gustafson EJ (1998) Quantifying landscape spatial patterns: what is the state of the art? Ecosystems 1:143–156

    Article  Google Scholar 

  • Hargis CD, Bissonette JA, David JL (1998) The behavior of landscape metrics commonly used in the study of habitat fragmentation. Landsc Ecol 13:167–186

    Article  Google Scholar 

  • Herbario CICY (2010) Flora de la Península de Yucatán. http://www.cicy.mx/sitios/flora%20digital/. Accessed Dec 2011

  • Hernández PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29:773–785

    Article  Google Scholar 

  • Hernández-Stefanoni JL, Dupuy JM (2008) Effects of landscape patterns on species density and abundance of trees in a tropical subdeciduos forest of the Yucatan Peninsula. For Ecol Manage 255:3797–3805

    Article  Google Scholar 

  • Hernández-Stefanoni JL, Dupuy JM, Tun-Dzul F, May-Pat F (2011) Influence of landscape structure and stand age on species density and biomass of a tropical dry forest across spatial scales. Landsc Ecol 26:355–370

    Article  Google Scholar 

  • Hernández-Xolocotzi E, Baltaza E, Tache S (1995) La milpa en Yucatán, Un sistema agrícola tradicional. Colegiode Postgraduados, Montecillo

    Google Scholar 

  • Hill JL, Curran PJ (2003) Area, shape and isolation of tropical forest fragments: effects on tree species diversity and implications for conservation. J Biogeogr 30:1391–1403

    Article  Google Scholar 

  • Hill N, Keddy P (1992) Prediction of rarities from habitat variables: coastal plain plants on Nova Scotian lakeshores. Ecology 73:1852–1859

    Article  Google Scholar 

  • Hubbell SP (2001) The Unified Neutral Theory of Biodiversity and Biogeography. University Press Princeton, Princenton, p 375

    Google Scholar 

  • Hubbell S (2005) Neutral theory in community ecology and the hypothesis of functional equivalence. Funct Ecol 19:166–172

    Article  Google Scholar 

  • Hutchinson GE (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–427

    Article  Google Scholar 

  • Ibarra-Manríquez G, Villaseñor JL, Durán R, Meave J (2002) Biogeographical analysis of the tree flora of the Yucatan Peninsula. J Biogeogr 29:17–29

    Article  Google Scholar 

  • Jones MM, Tuomisto H, Borcard D, Legendre P, Clark DB, Olivas PC (2008) Explaining variation in tropical plant community composition: influence of environmental and spatial data quality. Oecologia 155:593–604

    Article  PubMed  Google Scholar 

  • Laurance WF, Vasconcelos HL, Lovejoy TE (2000) Forest loss and fragmentation in the Amazon: implications for wildlife conservation. Oryx 34:39–45

    Google Scholar 

  • Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74:1659–1673

    Article  Google Scholar 

  • Leibold MA (1995) The niche concept revisited: mechanistic models and community context. Ecology 76:1371–1382

    Article  Google Scholar 

  • Leibold MA (2008) Ecology: return of the niche. Nature 454:39–41

    Article  PubMed  CAS  Google Scholar 

  • Leibold MA, McPeek MA (2006) Coexistence of the niche and neutral perspectives in community ecology. Ecology 87:1399–1410

    Article  PubMed  Google Scholar 

  • López-Martínez JO, Hernández-Stefanoni JL, Dupuy JM, Meave JA (2013) Partitioning the variation of woody plant β-diversity in a landscape of secondary tropical dry forests across spatial scales. J Veg Sci 24:33–45

    Article  Google Scholar 

  • Luoto M (2000) Modelling of rare plant species richness by landscape variables in an agriculture area in Finland. Plant Ecol 149:157–168

    Article  Google Scholar 

  • Manne LL, Pimm SL (2001) Beyond eight forms of rarity: which species are threatened and which will be next? Anim Conserv 4:221–229

    Article  Google Scholar 

  • McGarigal K, Cushman SA, Neel MC, Ene E (2002) FRAGSTATS: spatial pattern analysis program for categorical maps. University of Massachusetts, Amherst

    Google Scholar 

  • McGill BJ (2010) Matters of scale. Science 328:575–576

    Article  PubMed  CAS  Google Scholar 

  • Miranda F (1978) Vegetación de la península yucateca. Colegio de Post Graduados, Chapingo

    Google Scholar 

  • Nekola JC, White PS (1999) The distance decay of similarity in biogeography and ecology. J Biogeogr 26:867–878

    Article  Google Scholar 

  • Orellana R, Islebe G, Espadas C (2003) Presente, pasado y futuro de los climas de la Península de Yucatán. In: Colunga P, Larqué A (eds) Naturaleza y sociedad en el área maya: pasado, presente y futuro. Academia Mexicana de Ciencias y Centro de Investigación Científica de Yucatán, Mérida, pp 37–52

    Google Scholar 

  • Poorter L (2007) Are species adapted to their regeneration niche, adult niche, or both? Am Nat 169:433–442

    Article  PubMed  Google Scholar 

  • Primack RB, Miao SL (1992) Dispersal can limit local plant distribution. Conserv Biol 6:513–519

    Article  Google Scholar 

  • Rabinowitz D (1981) Seven forms of rarity. In: Synge H (ed) The biological aspects of rare plant conservation. Wiley, Chichester, pp 205–217

    Google Scholar 

  • Ricklefs RE, Lovette IJ (1999) The roles of island area per se and habitat diversity in the species-area relationships of four Lesser Antillean faunal groups. J Anim Ecol 68:1142–1160

    Article  Google Scholar 

  • Rico-Gray V, García-Franco JG (1991) The maya and the vegetation of the Yucatan Peninsula. J Ethnobiol 11:135–142

    Google Scholar 

  • Robertson G (2000) Gs+: geostatistics for the environmental sciences gamma design software. Plainwell, Michigan

    Google Scholar 

  • Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Shmida A, Wilson MV (1985) Biological determinants of species diversity. J Biogeogr 12:1–20

    Article  Google Scholar 

  • Soberón J, Jiménez R, Golubov J, Koleff P (2007) Assessing completeness of biodiversity databases at different spatial scales. Ecography 30:152–160

    Google Scholar 

  • Svenning JC, Skov F (2005) The relative roles of environment and history as controls of tree species composition and richness in Europe. J Biogeogr 32:1019–1033

    Article  Google Scholar 

  • Tetetla-Rangel E, Durán GR, Hernández-Stefanoni JL, Dupuy JM (2012) Distribución espacial de la riqueza de especies leñosas raras de la Península de Yucatán y su relación con las áreas naturales protegidas. Trop Conserv Sci 5(3):320–339

    Google Scholar 

  • TROPICOS (2009) Missouri Botanical Garden. http://www.tropicos.org. Accessed Dec 2011

  • Van Rensburg B, Chown S, Gaston K (2002) Species richness, environmental correlates, and spatial scale: a test using South African birds. Am Nat 159:566–577

    Article  PubMed  Google Scholar 

  • Waide R, Willig MR, Steiner C, Mittelbach G, Gough L, Dodson S, Juday G, Parmenter R (1999) The relationship between productivity and species richness. Annu Rev Ecol Syst 30:257–300

    Article  Google Scholar 

  • Whittaker RJ, Willis KJ, Field R (2001) Scale and species richness: towards a general, hierarchical theory of species diversity. J Biogeogr 28:453–470

    Article  Google Scholar 

  • Wiens JA (1989) Spatial scaling in ecology. Funct Ecol 3:385–397

    Article  Google Scholar 

  • Wisz MS, Hijmans RJ, Li J, Petersons AT, Graham CH, Guisan A, NCEAS Predicting Species Distributions Working Group (2008) Effects of sample size on the performance of species distribution models. Divers Distrib 14:763–773

    Article  Google Scholar 

  • Wohlgemuth T (1998) Modelling floristic species richness on a regional scale: a case study in Switzerland. Biodivers Conserv 7:159–177

    Article  Google Scholar 

  • Zar JH (1999) Biostatistical analysis. Prentice Hall, New Jersey

    Google Scholar 

Download references

Acknowledgments

We thank Germán Carnevali, Rodrigo Duno, Rafael Durán, Filogonio May-Pat, José Luis Tapia, Jorge Carlos Trejo and Paulino Simá for their help with the correct nomenclature of the plant species. Gerardo García-Contreras, Paul Hoekstra and Fernando Tun-Dzul provided helpful comments on plant species distributions and help in GIS processing. We are grateful to the CONACYT for the Ph.D. grant to ETR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis Hernández-Stefanoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tetetla-Rangel, E., Hernández-Stefanoni, J.L. & Dupuy, J.M. Patterns of rare woody species richness: the influence of environment, landscape attributes and spatial structure across different spatial scales. Biodivers Conserv 22, 1435–1450 (2013). https://doi.org/10.1007/s10531-013-0483-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-013-0483-7

Keywords

Navigation