Skip to main content

Advertisement

Log in

Local and landscape drivers of biodiversity of four groups of ants in coffee landscapes

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Agriculture of varying management intensity dominates fragmented tropical areas and differentially impacts organisms across and within taxa. We examined impacts of local and landscape characteristics on four groups of ants in an agricultural landscape in Chiapas, Mexico comprised of forest fragments and coffee agroecosystems varying in habitat quality. We sampled ground ants found in leaf litter and rotten logs and arboreal ants found in hollow coffee twigs and on tree trunks. Then using vegetation and agrochemical indices and conditional inference trees, we examined the relative importance of local (e.g. vegetation, elevation, agrochemical) and landscape variables (e.g. distance to and amount of nearby forest and rustic coffee) for predicting richness and abundance of ants. Leaf litter ant abundance increased with vegetation complexity; richness and abundance of ants from rotten logs, twig-nests, and tree trunks were not affected by vegetation complexity. Agrochemical use did not affect species richness or abundance of any ant group. Several local factors (including humus mass, degree of decay of logs, number of hollow twigs, tree circumference, and absence of fertilizers) were significant positive predictors of abundance and richness of some ant groups. Two landscape factors (forest within 200 m, and distance from forest) predicted richness and abundance of twig-nesting and leaf litter ants. Thus, different ant groups were influenced by different characteristics of agricultural landscapes, but all responded primarily to local characteristics. Given that ants provide ecosystem services (e.g. pest control) in coffee farms, understanding ant responses to local and landscape characteristics will likely inform farm management decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agosti D, Alonso LE (2000) The ALL Protocol, a standard protocol for the collection of ground-dwelling ants. In: Agosti D, Majer JD, Alonso LE, Shultz TR (eds) Ants: standard methods for measuring and monitoring biodiversity. Smithsonian Institution, Washington, DC, pp 204–206

    Google Scholar 

  • Andersen AN, Majer JD (2004) Ants show the way down under: invertebrates as bioindicators in land management. Front Ecol Environ 2:291–298

    Article  Google Scholar 

  • Andersen AN, Hoffmann BD, Muller WJ, Griffiths AD (2002) Using ants as bioindicators in land management: simplifying assessment of ant community responses. J Appl Ecol 39:8–17

    Article  Google Scholar 

  • Armbrecht I, Perfecto I (2003) Litter-twig dwelling ant species richness and predation potential within a forest fragment and neighboring coffee plantations of contrasting habitat quality in Mexico. Agric Ecosyst Environ 97:107–115

    Article  Google Scholar 

  • Armbrecht I, Rivera L, Perfecto I (2005) Reduced diversity and complexity in the leaf-litter ant assemblage of Colombian coffee plantations. Conserv Biol 19:897–907

    Article  Google Scholar 

  • Batáry P, Matthiesen T, Tscharntke T (2010) Landscape-moderated importance of hedges in conserving farmland bird diversity of organic versus conventional croplands and grasslands. Biol Conserv 143:2020–2027

    Article  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc 57:289–300

    Google Scholar 

  • Bestelmeyer BT, Wiens JA (1996) The effects of land use on the structure of ground-foraging ant communities in the Argentine Chaco. Ecol Appl 6:1225–1240

    Article  Google Scholar 

  • Bestelmeyer BT, Agosti D, Alonso LE, Brandão CRF, Brown WL, Delabie JHC, Silvestre R (2000) Field techniques for the study of ground-dwelling ants. In: Agosti D, Majer JD, Alonso LE, Shultz TR (eds) Ants: standard methods for measuring and monitoring biodiversity. Smithsonian Institution, Washington, DC, pp 122–144

    Google Scholar 

  • Bianchi FJ, Booij CJ, Tscharntke T (2006) Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc R Soc B 273:1715–1727

    Article  PubMed  CAS  Google Scholar 

  • Bisseleua DHB, Missoup AD, Vidal S (2009) Biodiversity conservation, ecosystem functioning, and economic incentives under cocoa agroforestry intensification. Conserv Biol 23:1176–1184

    Article  PubMed  CAS  Google Scholar 

  • Bivand R, Altman M, Anselin L, Assunção R, Berke O, Bernat A, Blanchet G, Blankmeyer E, Carvalho M, Christensen B, Chun Y, Dormann C, Dray S, Halbersma R, Krainski E, Legendre P, Lewin-Koh N, Li H, Ma J, Millo G, Mueller W, Ono H, Peres-Neto P, Piras G, Reder M, Tiefelsdorf M, Yu D (2012) spdep: Spatial dependence: weighting schemes, statistics and models. R package version 0.5-46. http://CRAN.R-project.org/package=spdep. Accessed Dec 2012

  • Bjornstad O (2009). ncf: spatial nonparametric covariance functions. R package version 1.1-3. http://CRAN.R-project.org/package=ncf. Accessed Dec 2012

  • Blüthgen N, Stork NE, Fiedler K (2004) Bottom-up control and co-occurrence in complex communities: honeydew and nectar determine a rainforest ant mosaic. Oikos 106:344–358

    Article  Google Scholar 

  • Bolton B (1994) Identification guide to the ant genera of the world. Harvard University Press, Cambridge

    Google Scholar 

  • Brown WL Jr (1976) Contributions toward a reclassification of the Formicidae. Part VI. Ponerinae, tribe Ponerini, subtribe Odontomachiti. Section A. Introduction, subtribal characters. Genus Odontomachus Stud Entomol 19:167–171

    Google Scholar 

  • Byrne MM (1994) Ecology of twig-dwelling ants in wet lowland tropical forest. Biotropica 6:61–72

    Article  Google Scholar 

  • Carvalho KS, Vasconcelos HL (1999) Forest fragmentation in central Amazonia and its effects on litter-dwelling ants. Biol Conserv 91:151–157

    Article  Google Scholar 

  • Castellon T, Sieving K (2006) An experimental test of matrix permeability and corridor use by an endemic understory bird. Conserv Biol 20:135–145

    Article  PubMed  Google Scholar 

  • Chong CS, Hoffmann AA, Thomson LT (2007) Commercial agrochemical applications in vineyards do not influence ant communities. Environ Entomol 36:1374–1383

    Article  PubMed  Google Scholar 

  • Clergue B, Amiaud B, Pervanchon F, Lasserre-Joulin F, Plantureux S (2005) Biodiversity: function and assessment in agricultural areas A review. Agron Sustain Dev 25:1–15

    Article  Google Scholar 

  • Concepción EC, Díaz M, Baquero RA (2008) Effects of landscape complexity on the ecological effectiveness of agri-environment schemes. Landsc Ecol 23:135–148

    Article  Google Scholar 

  • Connell JH (1978) Diversity in tropical rain forest and coral reefs. Science 199:1302–1310

    Article  PubMed  CAS  Google Scholar 

  • Daily GC, Ehrlich PR, Sánchez-Azofeifa A (2001) Countryside biogeography: use of human-dominated habitats by the avifauna of southern Costa Rica. Ecol Appl 11:1–13

    Article  Google Scholar 

  • Dauber J, Hirsch M, Simmering D, Waldhardt R, Otte A, Wolters V (2003) Landscape structure as an indicator of biodiversity: matrix effects on species richness. Agric Ecosyst Environ 98:321–329

    Article  Google Scholar 

  • Dauber J, Purtauf T, Allspach A, Frisch J, Voigtländer K, Wolters V (2005) Local versus landscape controls on diversity: a test using surface-dwelling soil macroinvertebrates of differing mobility. Global Ecol Biogeogr 14:213–221

    Article  Google Scholar 

  • Davidson DW, Cook SC, Snelling RR, Chua TH (2003) Explaining the abundance of ants in lowland tropical rainforest canopies. Science 300:969–972

    Article  PubMed  CAS  Google Scholar 

  • De la Mora A, Philpott SM (2010) Wood-nesting ants and their parasites in forests and coffee agroecosystems. Environ Entomol 39:1473–1481

    Article  Google Scholar 

  • Dormann CF, McPherson JM, Araújo MB, Bivand R, Bolliger J, Carl G, Davies RG, Hirzel A, Jetz W, Kissling WD, Kühn I, Ohlemüller R, Peres-Neto PR, Reineking B, Schröder B, Schurr FM, Wilson R (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609–628

    Article  Google Scholar 

  • Duffy JE (2009) Why biodiversity is important to the functioning of real-world ecosystems. Front Ecol Environ 7:437–444

    Article  Google Scholar 

  • Ellison AM, Record S, Arguello A, Gotelli NJ (2007) Rapid inventory of the ant assemblage in a temperate hardwood forest: species composition and assessment of sampling methods. Environ Entomol 36:766–775

    Article  PubMed  Google Scholar 

  • Gabriel D, Sait SM, Hodgson JA, Schmutz U, Kunin WE, Benton TG (2010) Scale matters: the impact of organic farming on biodiversity at different spatial scales. Ecol Lett 13:858–869

    Article  PubMed  Google Scholar 

  • García Estrada C, Damon A, Sánchez Hernández C, Soto Pinto L, Guillermo Ibarra-Núñez G (2006) Bat diversity in montane rainforest and shaded coffee under different management regimes in southeastern Chiapas, Mexico. Biol Conserv 132:351–361

    Article  Google Scholar 

  • Gibb H, Hjältén J, Ball JP, Atlegrim O, Pettersson RB, Hilszczanski J, Johansson T, Danell K (2006) Effects of landscape composition and substrate availability on saproxylic beetles in boreal forests: a study using experimental logs for monitoring assemblages. Ecography 29:191–204

    Article  Google Scholar 

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391

    Article  Google Scholar 

  • Gotelli NJ, Ellison AM (2004) A primer of ecological statistics. Sinauer Associates, Inc., Sunderland

    Google Scholar 

  • Gotelli NJ, Ellison AM, Dunn RR, Sanders NJ (2011) Counting ants (Hymenoptera: formicidae): biodiversity sampling and statistical analysis for myrmecologists. Myrmecol News 15:13–19

    Google Scholar 

  • Hahn D, Wheeler DE (2002) Seasonal foraging activity and bait preferences of ants on Barro Colorado Island, Panama. Biotropica 34:348–356

    Google Scholar 

  • Hoffmann BD (2010) Using ants for rangeland monitoring: global patterns in the responses of ant communities to grazing. Ecol Indic 10:105–111

    Article  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The Ants. Springer, Berlin

    Google Scholar 

  • Hothorn T, Hornik K, Zeileis A (2006) Unbiased recursive partitioning: a conditional inference framework. J Comput Graph Stat 15:651–674

    Article  Google Scholar 

  • Jha S, Vandermeer JH (2010) Impacts of coffee agroforestry management on tropical bee communities. Biol Conserv 143:1423–1431

    Article  Google Scholar 

  • Jules E, Shahani P (2003) A broader ecological context to habitat fragmentation: why matrix habitat is more important than we though. J Veg Sci 14:459–464

    Article  Google Scholar 

  • Kaspari M (1996) Testing resource-based models of patchiness in four neotropical litter ant assemblages. Oikos 76:443–454

    Article  Google Scholar 

  • Kaspari M, Weiser MD (2000) Ant activity along moisture gradients in a neotropical forest. Biotropica 32:703–711

    Article  Google Scholar 

  • Kaspari M, Yanoviak SP (2001) Bait use in tropical litter and canopy ants—evidence of differences in nutrient limitation. Biotropica 33:207–211

    Article  Google Scholar 

  • Klimes P, Idigel C, Rimandai M, Fayle TM, Janda M, Weiblen GD, Novotny V (2012) Why are there more arboreal ant species in primary than in secondary tropical forests? J Anim Ecol 81:1103–1112

    Article  PubMed  Google Scholar 

  • Longino JT (2009) Additions to the taxonomy of New World Pheidole (Hymenoptera: formicidae). Zootaxa 2181:1–90

    Google Scholar 

  • Longino JT (2011) Ants of Costa Rica.http://academic/evergreen.edu/projects/ants/AntsofCostaRica.html. Accessed January, 2011

  • Matlock RB, de la Cruz R (2003) Ants as indicators of pesticide impacts in banana. Environ Entomol 32:816–829

    Article  CAS  Google Scholar 

  • McGlynn T, Fawcett R, Clark D (2009) Litter biomass and nutrient determinants of ant density, nest size, and growth in a Costa Rican tropical wet forest. Biotropica 2:234–240

    Article  Google Scholar 

  • Moguel P, Toledo V (1999) Biodiversity conservation in traditional coffee systems of Mexico. Conserv Biol 13:11–21

    Article  Google Scholar 

  • Moorhead LC, Philpott SM, Bichier P (2010) Epiphyte biodiversity in the coffee agricultural matrix: canopy stratification and distance from forest fragments. Conserv Biol 24:737–746

    Article  PubMed  Google Scholar 

  • Økland B, Bakke A, Hagvar S, Kvamme T (1996) What factors influence the diversity of saproxylic beetles? A multiscaled study from a spruce forest in southern Norway. Biodiv Conserv 5:75–100

    Article  Google Scholar 

  • Olden JD, Lawler JJ, Poff NL (2008) Machine learning methods without tears: a primer for ecologists. Q Rev Biol 83:171–192

    Article  PubMed  Google Scholar 

  • Oliver I, Garden D, Greenslade PJ, Haller B, Rodgers D, Seeman O, Johnston B (2005) Effects of fertiliser and grazing on the arthropod communities of a native grassland in south-eastern Australia. Agric Ecosyst Environ 109:323–334

    Article  Google Scholar 

  • Peck SL, McQuaid B, Lee C (1998) Using ant species (Hymenoptera: formicidae) as a biological indicator of agroecosystem condition. Environ Entomol 27:1102–1110

    Google Scholar 

  • Perfecto I, Snelling R (1995) Biodiversity and the transformation of a tropical agroecosystem: ants in coffee plantations. Ecol Appl 5:1084–1097

    Article  Google Scholar 

  • Perfecto I, Vandermeer J (1996) Microclimatic changes and the indirect loss of ant diversity in a tropical agroecosystem. Oecologia 108:577–582

    Article  Google Scholar 

  • Perfecto I, Vandermeer J (2002) Quality of agroecological matrix in a tropical montane landscape: ants in coffee plantations in Southern Mexico. Conserv Biol 16:174–182

    Article  Google Scholar 

  • Perfecto I, Rice R, Greenberg R, Van der Voort M (1996) Shade coffee: a disappearing refuge for biodiversity. Bioscience 46:598–608

    Article  Google Scholar 

  • Perfecto I, Vandermeer J, Mas A, Soto Pinto L (2005) Biodiversity, yield, and shade coffee certification. Ecol Econ 54:435–446

    Article  Google Scholar 

  • Petal J (1980) Ant populations, their regulation and effect on soil in meadows. J Pol Sci 28:297–326

    CAS  Google Scholar 

  • Philpott SM (2005) Changes in arboreal ant populations following pruning of coffee shade-trees in Chiapas, Mexico. Agroforest Syst 64:219–224

    Article  Google Scholar 

  • Philpott SM, Foster PF (2005) Nest-site limitation in coffee agroecosystems: artificial nests maintain diversity of arboreal ants. Ecol Appl 5:1478–1485

    Article  Google Scholar 

  • Philpott SM, Arendt W, Armbrecht I, Bichier P, Dietsch T, Gordon C, Greenberg R, Perfecto I, Soto-Pinto L, Tejada-Cruz C, Williams G, Valenzuela J (2008a) Biodiversity loss in Latin American coffee landscapes: reviewing evidence on ants, birds, and trees. Conserv Biol 22:1093–1105

    Article  PubMed  Google Scholar 

  • Philpott SM, Lin BB, Jha S, Brines SA (2008b) A multi-scale assessment of hurricane impacts based on land-use and topographic features. Agric Ecosyst Environ 128:12–20

    Article  Google Scholar 

  • R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org/

  • Ricketts T, Daily G, Ehrlich P, Fay J (2001) Countryside biogeography of moths in a fragmented landscape: biodiversity in native and agricultural habitats. Conserv Biol 15:378–388

    Article  Google Scholar 

  • Rivera L, Armbrecht I (2005) Diversidad de tres gremios de hormigas en cafetales de sombra, de sol y bosques de Risaralda. Rev Colomb Entomol 31:89–96

    Google Scholar 

  • Schlick-Steiner BC, Steiner FM, Moder K, Bruckner A, Fiedler K, Christian E (2006) Assessing ant assemblages: pitfall trapping versus nest counting (Hymenoptera, Formicidae). Insect Soc 53:274–281

    Article  Google Scholar 

  • Schmidt MH, Thies C, Nentwig W, Tscharntke T (2008) Contrasting responses of arable spiders to the landscape matrix at different spatial scales. J Biogeogr 35:157–166

    Google Scholar 

  • Schonberg LA, Longino J, Nadkarni NM, Yanoviak SP, Gering J (2004) Arboreal ant species richness in primary forest, secondary forest, and pasture habitats of a tropical montane landscape. Biotropica 36:402–440

    Google Scholar 

  • Shik JZ, Kaspari M (2010) More food, less habitat: how necromass and leaf litter decomposition combine to regulate a litter ant community. Ecol Entomol 35:158–165

    Article  Google Scholar 

  • Steffan-Dewenter I, Münzenberg U, Bürger C, Thies C, Tscharntke T (2002) Scale dependent effects of landscape context on three pollinator guilds. Ecology 831:421–1432

    Google Scholar 

  • Steffan-Dewenter I, Kessler M, Barkmann J, Bos MM, Buchori D, Erasmi S, Faust H, Gerhold G, Glenk K, Grandstein SR, Guhardja E, Harteveld M, Hertel D, Höhn P, Kappas M, Köhler S, Leuschner C, Maertens M, Marggraf R, Migge-Kleian S, Mogea J, Pitopang R, Schaefer M, Schwarze S, Sporn SG, Steingrebe A, Tjitrosoedirdjo SS, Tjitrosoemito S, Twele A, Weber R, Woltmann L, Zeller M, Tscharntke T (2007) Tradeoffs between income, biodiversity, and ecosystem functioning during tropical rainforest conversion and agroforestry intensification. Proc Natl Acad Sci 104:4973–4978

    Article  PubMed  CAS  Google Scholar 

  • Strobl C, Hothorn T, Zeileis A (2009) Party on! The R Journal 2:14–17

    Google Scholar 

  • Teodoro AV, Sousa-Souto L, Klein AM, Tscharntke T (2010) Seasonal contrasts in the response of coffee ants to agroforestry shade-tree management. Environ Entomol 39:1744–1750

    Article  PubMed  CAS  Google Scholar 

  • Torres JA (1994) Wood decomposition of Cyrilla racemiflora in a tropical montane forest. Biotropica 26:124–140

    Article  Google Scholar 

  • Tscharntke T, Klein A, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol Lett 8:857–874

    Article  Google Scholar 

  • Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L, Batáry P, Bengtsson J, Clough Y, Crist TO, Dormann CF, Ewers RM, Fründ J, Holt RD, Holzschuh A, Klein AM, Kleijn D, Kremen C, Landis DA, Laurance W, Lindenmayer D, Scherber C, Sodhi N, Steffan-Dewenter I, Thies C, van der Putten WH, Westphal C (2012) Landscape moderation of biodiversity patterns and processes—eight hypotheses. Biol Rev Camb Philos Soc 87:661–685

    Article  PubMed  Google Scholar 

  • Tylianakis JM, Klein AM, Tscharntke T (2005) Spatiotemporal variation in the diversity of Hymenoptera across a tropical habitat gradient. Ecology 86:3296–3302

    Article  Google Scholar 

  • Uno S, Cotton J, Philpott SM (2010) Diversity and species composition of ants in urban green spaces. Urban Ecosyst 13:425–441

    Article  Google Scholar 

  • Vandermeer J, Carvajal R (2001) Metapopulation dynamics and the quality of the matrix. Am Nat 159:211–220

    Article  Google Scholar 

  • Vasconcelos HL, Laurance WF (2005) Influence of habitat, litter type, and soil invertebrates on leaf-litter decomposition in a fragmented Amazonian landscape. Oecologia 144:456–462

    Article  PubMed  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern Applied Statistics with S, 4th edn. Springer, New York. ISBN 0-387-95457-0

    Book  Google Scholar 

Download references

Acknowledgments

A. García Ballinas, J. Santis, G. Dominguez, U. Pérez Vásquez, G. López Bautista, B.E. Chilel, E. Schüller, S. Arming, and E. Sintes assisted with field work. R. Becker, R. John, and J.H. López Urbina assisted with the GIS analysis. B. Nickel provided assistance with spatial analysis. G. Ibarra Núñez, J. Rojas, J. Valle-Mora, and E. Chamé Vásquez of El Colegio de la Frontera Sur (ECOSUR) provided logistical support. C. Hochreiter, D. Gonthier, K. Ennis, G. Ibarra Núñez, J.-P. Lachaud, G. Pérez-Lachaud, L. Soto-Pinto, D. Allen, D. Jackson and J. Remfert provided comments on the manuscript. We thank the owners of Fincas Irlanda, Argovia, Hamburgo, San Francisco, Genova, Rancho Alegre, Chiripa, Maravillas, Santa Anita, San Enrique and the Rogers Family Company for allowing us to conduct research on their farms. Finca Irlanda and Don Walter Peters provided housing. CM was funded by University of Toledo Undergraduate Summer Research and Creative Activity Program, A Study Abroad Travel Grant, and the Explorer’s Club Youth Activity Fund. ADM was funded by scholarship number 168970 granted by the National Council of Science and Technology (CONACYT) in Mexico and a Conservation International Rapid Assessment Program award. Additional funding was provided by NSF DEB-1020096 to SMP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. De la Mora.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

De la Mora, A., Murnen, C.J. & Philpott, S.M. Local and landscape drivers of biodiversity of four groups of ants in coffee landscapes. Biodivers Conserv 22, 871–888 (2013). https://doi.org/10.1007/s10531-013-0454-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-013-0454-z

Keywords

Navigation