Skip to main content

Advertisement

Log in

Geostatistical modelling of regional bird species richness: exploring environmental proxies for conservation purpose

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Identifying spatial patterns in species diversity represents an essential task to be accounted for when establishing conservation strategies or monitoring programs. Predicting patterns of species richness by a model-based approach has recently been recognised as a significant component of conservation planning. Finding those environmental predictors which are related to these patterns is crucial since they may represent surrogates of biodiversity, indicating in a fast and cheap way the spatial location of biodiversity hotspots and, consequently, where conservation efforts should be addressed. Predictive models based on classical multiple linear regression or generalised linear models crowded the recent ecological literature. However, very often, problems related with spatial autocorrelation in observed data were not adequately considered. Here, a spatially-explicit data-set on birds presence and distribution across the whole Tuscany region was analysed. Species richness was calculated within 1 × 1 km grid cells and 10 environmental predictors (e.g. altitude, habitat diversity and satellite-derived landscape heterogeneity indices) were included in the analysis. Integrating spatial components of variation with predictive ecological factors, i.e. using geostatistical models, a general model of bird species richness was developed and used to obtain predictive regional maps of bird diversity hotspots. A meaningful subset of environmental predictors, namely habitat productivity, habitat heterogeneity, combined with topographic and geographic information, were included in the final geostatistical model. Conservation strategies based on the predicted hotspots as well as directions for increasing sampling effort efficiency could be extrapolated by the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Araujo MB, Guisan A (2006) Five (or so) challenges for species distribution modelling. J Biogeogr 33:1677–1688

    Article  Google Scholar 

  • Arcamone E, Baccetti B (2004) Check-list COT degli uccelli toscani. www.centrornitologicotoscano.org

  • Austin MP (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol Model 157:101–118

    Article  Google Scholar 

  • Austin MP, Belbin L, Meyers JA, Doherty MD, Luoto M (2006) Evaluation of statistical models used for predicting plant species distributions: role of artificial data and theory. Ecol Model 199:197–216

    Article  Google Scholar 

  • Bacaro G, Ricotta C (2007) A spatially explicit measure of beta diversity. Community Ecol 8:41–46

    Article  Google Scholar 

  • Bacaro G, Ricotta C (2009) L’uso di dati da Atlante per misurare la beta-diversità. In: Amori G, Battisti C, De Felici S (eds) I Mammiferi della Provincia di Roma. Dallo stato delle conoscenze alla gestione e conservazione delle specie. Provincia di Roma, Assessorato alle politiche dell’Agricoltura, Stilgrafica, Roma

    Google Scholar 

  • Bacaro G, Rocchini D, Bonini I, Marignani M, Maccherini S, Chiarucci A (2008) The role of regional and local scale predictors for plant species richness in Mediterranean forests. Plant Biosyst 142:630–642

    Google Scholar 

  • Bacaro G, Baragatti E, Chiarucci A (2009) Using taxonomic data for assessing and monitoring biodiversity: are the tribes still fighting? J Environ Monit 11:798–801

    Article  PubMed  CAS  Google Scholar 

  • Baffetta F, Bacaro G, Fattorini L, Rocchini D, Chiarucci A (2007) Multi-stage cluster sampling for estimating average species richness at different spatial grains. Community Ecol 8:119–127

    Article  Google Scholar 

  • Bani L, Massimino D, Bottoni L, Massa R (2006) A multiscale method for selecting indicator species and priority conservation areas: a case study for broadleaved forests in Lombardy, Italy. Conserv Biol 20:512–526

    Article  PubMed  Google Scholar 

  • Barbaro L, Rossi JP, Vetillard F, Nezan J, Jactel H (2006) The spatial distribution of birds and carabid beetles in pine plantation forests: the role of landscape composition and structure. J Biogeogr 34:652–664

    Article  Google Scholar 

  • Begon M, Townsend CA, Harper JL (2006) Ecology: from individuals to ecosystems, 4th edn. Blackwell, Oxford

    Google Scholar 

  • Bibby CJ, Burgess ND, Hill DA, Mustoe SH (2000) Bird census techniques, 2nd edn. Academic, London

    Google Scholar 

  • Bino G, Levin N, Darawshi S, Van Der Hal N, Reich-Solomon A, Kark S (2008) Accurate prediction of bird species richness patterns in an urban environment using Landsat-derived NDVI and spectral unmixing. Int J Remote Sens 29:3675–3700

    Article  Google Scholar 

  • Block WM, Brennan LA (1993) The habitat concept in ornithology. Curr Ornithol 11:35–91

    Google Scholar 

  • Bossard M, Feranec J, Otahel J (2000) CORINE land cover technical guide—addendum 2000. Technical report no. 40. European Environment Agency, Copenhagen

    Google Scholar 

  • Box GEP, Cox DR (1964) An analysis of transformations. J Roy Stat Soc B 26:211–246

    Google Scholar 

  • Cabeza M, Araujo MB, Wilson RJ, Thomas CD, Cowley MJR, Moilanen A (2004) Combining probabilities of occurrence with spatial reserve design. J Appl Ecol 41:252–262

    Article  Google Scholar 

  • Carroll SS, Pearson DL (1998) Spatial modeling of butterfly species richness using tiger beetles (Cicindelidae) as a bioindicator taxon. Ecol Appl 8:531–543

    Article  Google Scholar 

  • Centro Italiano Studi Ornitologici (CISO) (2010) http://www.ciso-coi.org/

  • Chiarucci A, Bacaro G, Rocchini D, Fattorini L (2008) Discovering and rediscovering the sample-based rarefaction formula in ecological literature. Community Ecol 9:121–123

    Article  Google Scholar 

  • Cody ML (1985) Habitat Selection in Birds. Academic, Orlando

    Google Scholar 

  • Cooper SD, Barmuta L, Sarnelle O, Kratz K, Diehl S (1997) Quantifying spatial heterogeneity in streams. J N Am Benthol Soc 16:174–188

    Article  Google Scholar 

  • Cressie N (1990) The origins of kriging. Math Geol 22:239–252

    Article  Google Scholar 

  • Csontos P, Rocchini D, Bacaro G (2007) Modelling factors affecting litter mass components of pine stands. Community Ecol 8:247–256

    Article  Google Scholar 

  • Currie DJ, Mittelbach GG, Cornell HV, Field R, Guegan JF, Hawkins BA, Kaufman DM, Kerr JT, Oberdorff T, O’Brien E, Turner JRG (2004) Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol Lett 7:1121–1134

    Article  Google Scholar 

  • Dalthorp D (2004) The generalized linear model for spatial data: assessing the effects of environmental covariates on population density in the field. Entomol Exp Appl 111:117–131

    Article  Google Scholar 

  • Diggle PJ, Ribeiro PJ Jr (2007) Model-based Geostatistics. Springer, New York

    Google Scholar 

  • Doswald N, Willis SG, Collingham YC, Pain DJ, Green RE, Huntley B (2009) Potential impacts of climatic change on the breeding and non-breeding ranges and migration distance of European Sylvia warblers. J Biogeogr 36:1194–1208

    Article  Google Scholar 

  • Fairbanks DHK, McGwire KC (2004) Patterns of floristic richness in vegetation communities of California: regional scale analysis with multi-temporal NDVI. Glob Ecol Biogeogr 13:221–235

    Article  Google Scholar 

  • Field R, O’Brien EM, Whittaker RJ (2005) Global models for predicting woody plant richness from climate: development and evaluation. Ecology 86:2263–2277

    Article  Google Scholar 

  • Foody GM, Cutler MEJ (2003) Tree biodiversity in protected and logged Bornean tropical rain forests and its measurement by satellite remote sensing. J Biogeogr 30:1053–1066

    Article  Google Scholar 

  • Fox J (2008) Applied regression analysis and generalized linear models, 2nd edn. Sage, Thousand Oaks

    Google Scholar 

  • Gillespie TW, Foody GM, Rocchini D, Giorgi AP, Saatchi S (2008) Measuring and modelling biodiversity from space. Prog Phys Geogr 32:203–221

    Article  Google Scholar 

  • Goetz S, Steinberg D, Dubayah R, Blair B (2007) Laser remote sensing of canopy habitat heterogeneity as a predictor of bird species richness in an eastern temperate forest, USA. Remote Sens Environ 108:254–263

    Article  Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York

    Google Scholar 

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391

    Article  Google Scholar 

  • Gould W (2000) Remote Sensing of vegetation, plant species richness, and regional biodiversity hot spots. Ecol Appl 10:1861–1870

    Article  Google Scholar 

  • Gregory RD, Noble DG, Custance J (2004) The state of play of farmland birds: population trends and conservation status of lowland farmland birds in the United Kingdom. Ibis 146:1–13

    Article  Google Scholar 

  • Guegan JF, Lek S, Oberdorff T (1998) Energy availability and habitat heterogeneity predict global riverine fish diversity. Nature 391:382–384

    Article  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Article  Google Scholar 

  • Guisan A, Edwards J, Hastie T (2002) Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol Model 157:89–100

    Article  Google Scholar 

  • He KS, Zhang J, Zhang Q (2009) Linking variability in species composition and MODIS NDVI based on beta diversity measurements. Acta Oecol 35:14–21

    Article  Google Scholar 

  • Hochachka WM, Martin K, Doyle F, Krebs CJ (2000) Monitoring vertebrate populations using observational data. Can J Zool 78:521–529

    Article  Google Scholar 

  • Hoeting JA (2009) The importance of accounting for spatial and temporal correlation in analyses of ecological data. Ecol Appl 19:574–577

    Article  PubMed  Google Scholar 

  • Hoeting JA, Davis RA, Merton AA, Thompson SE (2006) Model selection for geostatistical models. Ecol Appl 16:87–98

    Article  PubMed  Google Scholar 

  • Hortal J, Lobo JM (2006) Towards a synecological framework for systematic conservation planning. Biodivers Inform 3:16–45

    Google Scholar 

  • Imre A, Rocchini D (2009) Explicitly accounting for pixel dimension in calculating classical and fractal landscape shape metrics. Acta Biotheor 57:249–360

    Article  Google Scholar 

  • Jetz W, Rahbek C (2002) Geographic range size and determinants of avian species richness. Science 297:1548–1551

    Article  PubMed  CAS  Google Scholar 

  • Kark S, Allnutt TF, Levin N, Manne LL, Williams PH (2007) The role of transitional areas as avian biodiversity centres. Global Ecol Biogeogr 16:187–196

    Article  Google Scholar 

  • Kati V, Devillers P, Dufrene M, Legakis A, Vokou D, Lebrun P (2004) Testing the value of six taxonomic groups as biodiversity indicators at a local scale. Conserv Biol 18:667–675

    Article  Google Scholar 

  • Kobayashi S (1974) The species-area relation I. A model for discrete sampling. Res Popul Ecol 15:223–237

    Article  Google Scholar 

  • Koellner T, Hersperger A, Wohlgemuth T (2004) Rarefaction method for assessing plant species diversity on a regional scale. Ecography 27:544, 532

    Google Scholar 

  • Kreft H, Jetz W (2007) Global patterns and determinants of vascular plant diversity. Proc Natl Acad Sci 104:5925–5930

    Article  PubMed  CAS  Google Scholar 

  • Krige DG (1966) Two-dimensional weighted moving average trend surfaces for ore-evaluation. J S Afr Inst Min Metall 66:13–38

    Google Scholar 

  • Krige DG (1976) A review of the development of geostatistics in South Africa. In: Guarascio M, David M, Huijbregts C (eds) Advanced geostatistics in the mining industry. Reidel, Dordrecht, pp 279–293

    Google Scholar 

  • Kuhn I (2007) Incorporating spatial autocorrelation may invert observed patterns. Divers Distrib 13:66–69

    Google Scholar 

  • Kumar S, Stohlgren TJ, Chong GW (2006) Spatial heterogeneity influences native and nonnative plant species richness. Ecology 87:3186–3199

    Article  PubMed  Google Scholar 

  • Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74:1659–1673

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology, second english edn. Elsevier, Amsterdam

    Google Scholar 

  • Lennon JJ, Koleff P, Greenwood JJD, Gaston KJ (2004) Contribution of rarity and commonness to patterns of species richness. Ecol Lett 7:81–87

    Article  Google Scholar 

  • Lillesand TM, Kiefer RW, Chipman JW (2004) Remote sensing and image interpretation, 5th edn. Wiley, New York

    Google Scholar 

  • MacArthur RH, Recher H, Cody M (1966) On the relation between habitat selection and species diversity. Am Nat 100:319–332

    Article  Google Scholar 

  • Maccherini S, Bacaro G, Favilli L, Piazzini S, Santi E, Marignani M (2009) Congruence among butterflies and vascular plants in evaluation of grassland restoration success. Acta Oecol 35:311–317

    Article  Google Scholar 

  • Maes D, Bauwens D, De Bruyn L, Anselin A, Vermeersch G, Van Landuyt W, De Knijf G, Gilbert M (2005) Species richness coincidence: conservation strategies based on predictive modelling. Biodivers Conserv 14:1345–1364

    Article  Google Scholar 

  • Matérn B (1986) Spatial variation, 2nd edn. Springer, Berlin

    Google Scholar 

  • Matheron G (1963) Principles of geostatistics. Econ Geol 58:1246–1266

    Article  CAS  Google Scholar 

  • McGarigal K, Marks BJ (1994) FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland

  • Nagendra H, Rocchini D (2008) High resolution satellite imagery for tropical biodiversity studies: the devil is in the detail. Biodivers Conserv 17:3431–3442

    Article  Google Scholar 

  • Nekola JC, White PS (1999) The distance decay of similarity in biogeography and ecology. J Biogeogr 26:867–878

    Article  Google Scholar 

  • Nelder JA, Mead R (1965) A simplex algorithm for function minimization. Comput J 7:308–313

    Google Scholar 

  • Ohlemüller R, Walker S, Bastow Wilson J (2006) Local vs regional factors as determinants of the invasibility of indigenous forest fragments by alien plant species. Oikos 112:493–501

    Article  Google Scholar 

  • Oindo BO, Skidmore AK (2002) Interannual variability of NDVI and species richness in Kenya. Int J Remote Sens 23:285–298

    Article  Google Scholar 

  • Palmer MW, Earls P, Hoagland BW, White PS, Wohlgemuth T (2002) Quantitative tools for perfecting species lists. Environmetrics 13:121–137

    Article  Google Scholar 

  • Pearson DL, Carroll SS (1999) The influence of spatial scale on cross-taxon congruence patterns and prediction accuracy of species richness. J Biogeogr 26:1079–1090

    Article  Google Scholar 

  • Pineda E, Lobo JM (2009) Assessing the accuracy of species distribution models to predict amphibian species richness patterns. J Anim Ecol 78:182–190

    Article  PubMed  Google Scholar 

  • Pineiro G, Perelman S, Guerschman JP, Paruelo JM (2008) How to evaluate models: observed vs. predicted or predicted vs. observed? Ecol Modell 216:316–322

    Article  Google Scholar 

  • Polasky S, Solow AR (2001) The value of information in reserve site selection. Biodivers Conserv 10:1051–1058

    Article  Google Scholar 

  • Prendergast JR, Quinn RM, Lawton JH, Eversham BC, Gibbons DW (1993) Rare species, the coincidence of diversity hotspots and conservation strategies. Nature 365:335–337

    Article  Google Scholar 

  • Pressey RL, Humphries CJ, Margules CR, Vane-Wright RI, Williams PH (1993) Beyond opportunisms: key principles for systematic reserve selection. Trends Ecol Evol 8:124–128

    Article  PubMed  CAS  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rahbek C, Gotelli NJ, Colwell RK, Entsminger GL, Rangel TFLVB, Graves GR (2007) Predicting continental-scale patterns of bird species richness with spatially explicit models. Proc R Soc Lond B 274:165–174

    Article  Google Scholar 

  • Raspetti F, Vittorini S (1995) Carta Climatica della Toscana. Pacini Editore, Pisa

    Google Scholar 

  • Ribeiro PJ Jr, Diggle PJ (2001) geoR: a package for geostatistical analysis. R-News 1:14–18

    Google Scholar 

  • Robertson MP, Cumming GS, Erasmus BFN (2010) Getting the most out of atlas data. Divers Distrib 16:363–375

    Article  Google Scholar 

  • Rocchini D, Marignani M, Bacaro G, Chiarucci A, Ferretti M, De Dominicis V, Maccherini S (2009) Multiscale sampling and statistical linear estimators to assess status and changes of land use diversity. Appl Veg Sci 12:225–236

    Article  Google Scholar 

  • Rocchini D, Balkenhol N, Carter GA, Foody GM, Gillespie TW, He KS, Kark S, Levin N, Lucas K, Luoto M, Nagendra H, Oldeland J, Ricotta C, Southworth J, Neteler M (2010) Remotely sensed spectral heterogeneity as a proxy of species diversity: recent advances and open challenges. Ecol Inform 5:318–329

    Google Scholar 

  • Rocchini D, Hortal J, Lengyel S, Lobo JM, Jiménez-Valverde A, Ricotta C, Bacaro G, Chiarucci A (2011) Accounting for uncertainty when mapping species distributions: the need for maps of ignorance. Prog Phys Geogr 35:211–226

    Google Scholar 

  • Ruggiero A, Kitzberger T (2004) Environmental correlates of mammal species richness in South America: effects of spatial structure, taxonomy and geographic range. Ecography 27:401–416

    Article  Google Scholar 

  • Santi E, Maccherini S, Rocchini D, Bonini I, Brunialti G, Favilli L, Perini C, Pezzo F, Piazzini S, Rota E, Salerni E, Chiarucci A (2010) Simple to sample: vascular plants as surrogate group in a nature reserve. J Nat Conserv 18:2–11

    Article  Google Scholar 

  • Schmeller DS, Henry P-Y, Julliard R, Gruber B, Clobert J, Dziock F, Lengyel S, Nowicki P, Déri E, Budrys E, Kull T, Tali K, Bauch B, Settele J, Van Swaay C, Kobler A, Babij V, Papastergiadou E, Henle K (2008) Advantages of volunteer-based biodiversity monitoring in Europe. Conserv Biol 23:307–316

    Article  PubMed  Google Scholar 

  • Scott JM, Heglund PJ, Morrison M, Raphael M, Haufler J, Wall B (2002) Predicting species occurrences: issues of scale and accuracy. Island Press, Covello

    Google Scholar 

  • St-Louis V, Pidgeon A, Clayton M, Locke B, Bash D, Radeloff V (2009) Satellite image texture and a vegetation index predict avian biodiversity in the Chihuahuan Desert of New Mexico. Ecography 32:468–480

    Article  Google Scholar 

  • Tharme AP, Green RE, Baines D, Bainbridge IP, O’Brien M (2001) The effect of management for red grouse shooting on the population density of breeding birds on heather-dominated moorland. J Appl Ecol 38:439–457

    Article  Google Scholar 

  • Thomaes A, Kervyn T, Maes A (2008) Applying species distribution modelling for the conservation of the threatened saproxylic Stag Beetle (Lucanus cervus). Biol Conserv 141:1400–1410

    Article  Google Scholar 

  • Thomson JR, Mac Nally R, Fleishman E, Horrocks G (2007) Predicting bird species distributions in reconstructed landscapes. Conserv Biol 21:752–766

    Article  PubMed  Google Scholar 

  • Tucker CJ, Grant DM, Dykstra JD (2004) NASA’s global orthorectified landsat data set. Photogramm Eng Rem Sens 70:313–322

    Google Scholar 

  • Waser LT, Stofer S, Schwarz M, Küchler M, Ivits E, Scheidegger CH (2004) Prediction of biodiversity: regression of lichen species richness on remote sensing data. Community Ecol 5:121–134

    Article  Google Scholar 

  • Whittaker RH (1972) Evolution and measurement of species diversity. Taxon 21:213–251

    Article  Google Scholar 

  • Williams PH, Gaston KJ (1994) Measuring more of biodiversity—can higher-taxon richness predict wholesale species richness? Biol Conserv 67:211–217

    Article  Google Scholar 

  • Williams P, Burgess N, Rahbek C (1999) Assessing large ‘flagship’ species for representing the diversity of sub-Saharan mammals, using hotspots of total richness, hotspots of endemism, and hotspots of complementary richness. In: Entwistle A, Dunstone N (eds) Has the panda had its day? Future priorities for the conservation of mammalian biodiversity. Cambridge University Press, Cambridge

    Google Scholar 

  • Wohlgemuth T, Nobis MP, Kienast F, Plattner M (2008) Modelling vascular plant diversity at the landscape scale using systematic samples. J Biogeogr 35:1226–1240

    Article  Google Scholar 

Download references

Acknowledgments

The Monitoring Program of Breeding Birds was funded by the “Regione Toscana”. We would like to acknowledge Noam Levin who provided constructive comments to a previous version of this manuscript. Part of this work was done by the first author (GB) during a visiting research period at the Institute of Hazard, Risk and Resilience, Department of Geography, University of Durham (UK), founded by the “Luigi and Francesca Brusarosco” Foundation. DR is partially funded by the Autonomous Province of Trento (Italy), ACE-SAP project (No. 23, June 12, 2008, of the University and Scientific Research Service).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Bacaro.

Appendix

Appendix

See Table 4.

Table 4 Matrix of correlation coefficients (Pearson’s product moment) for the set of variables used as bird species richness predictors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bacaro, G., Santi, E., Rocchini, D. et al. Geostatistical modelling of regional bird species richness: exploring environmental proxies for conservation purpose. Biodivers Conserv 20, 1677–1694 (2011). https://doi.org/10.1007/s10531-011-0054-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-011-0054-8

Keywords

Navigation