Skip to main content

Advertisement

Log in

Geographic Assessment of Present Protected Areas in Japan for Representativeness of Forest Communities

  • Published:
Biodiversity & Conservation Aims and scope Submit manuscript

Abstract

Most assessments of present protected areas have focused on which features are or are not represented and to what extent, but they have not considered the environmental gradients and the geographic context within each biodiversity feature under a conservation network. We examined how protected areas are distributed with respect to the distribution of six forest community types. Three analyses were applied to the dataset in the Red Data Book of Plant Communities in Japan and the related survey: (1) recursive partitioning was used to contrast environmental factors of conserved communities with nonconserved communities; (2) point pattern analysis, based on Ripley's K function, was used to describe the spatial pattern of conserved communities; and (3) the spatial scan statistic was used to detect spatial representation gaps. Overall, environmental bias was greatest in relation to soil and topography. However, the results of point pattern analysis showed that the spatial pattern of conserved communities did not depend entirely on the distribution of environmental factors. Four types of gaps in spatial representation were detected by the spatial scan statistic, irrespective of environmental bias. These results showed that although a community type might be well protected in total or along the environmental gradients, conserved communities might not capture the full range of geographic context. To ensure appropriate representation or protection, it is important that conservation planning for protected areas take into account both the environmental gradients and the geographic context within each biodiversity feature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anon. 2002. The National Biodiversity Strategy of Japan (Revised in 2002). http://www.biodic.go.jp/nbsap.html (in Japanese).

  • Araújo M.B. and Williams P.H. (2000). Selecting areas for species persistence using occurrence data. Biol. Conserv. 96: 331–345

    Article  Google Scholar 

  • Araújo M.B. and Williams P.H. (2001). The bias of complementarity hotspots toward marginal populations. Conserv. Biol. 15: 1710–1720

    Article  Google Scholar 

  • Besag J. (1977). Contribution to the discussion on Dr Ripley's paper. J. R. Stat. Soc. B 39: 193–195

    Google Scholar 

  • Briers R.A. (2002). Incorporating connectivity into reserve selection procedures. Biol. Conserv. 103: 77–83

    Article  Google Scholar 

  • Cabeza M. (2003). Habitat loss and connectivity of reserve networks in probability approaches to reserve design. Ecol. Lett. 6: 665–672

    Article  Google Scholar 

  • Cabeza M. and Moilanen A. (2001). Design of reserve networks and the persistence of biodiversity. Trends Ecol. Evol. 16: 242–248

    Article  PubMed  Google Scholar 

  • Cabeza M. and Moilanen A. (2003). Site-selection algorithms and habitat loss. Conserv. Biol. 17: 1402–1413

    Article  Google Scholar 

  • Cantú C., Wright R.G., Scott J.M. and Strand E. (2004). Assessment of current and proposed nature reserves of Mexico based on their capacity to protect geophysical features and biodiversity. Biol. Conserv. 115: 411–417

    Article  Google Scholar 

  • Channell R. and Lomolino M.V. (2000a). Dynamic biogeography and conservation of endangered species. Nature 403: 84–86

    Article  CAS  Google Scholar 

  • Channell R. and Lomolino M.V. (2000b). Trajectories to extinction: spatial dynamics of the contraction of geographical ranges. J. Biogeogr. 27: 169–179

    Article  Google Scholar 

  • Coulston J.W. and Riitters K.H. (2003). Geographic analysis of forest health indicators using spatial scan statistics. Environ. Manage. 31: 764–773

    Article  PubMed  Google Scholar 

  • Crandall K.A., Bininda-Emonds O.R.P., Mace G.M. and Wayne R.K. (2000). Considering evolutionary processes in conservation biology. Trends Ecol. Evol. 15: 290–295

    Article  PubMed  Google Scholar 

  • Environment Agency. (1996). Vegetation of Japan: Report of the Fourth Vegetation Survey. Environment Agency, Tokyo (in Japanese)

    Google Scholar 

  • Environment Agency. (1999). The Dataset for GIS on the Natural EnvironmentJapan. Ver. 2. Environment Agency, Tokyo (in Japanese)

    Google Scholar 

  • Franklin J. (1998). Predicting the distribution of shrub species in southern California from climate and terrain-derived variables. J. Veg. Sci. 9: 733–748

    Article  Google Scholar 

  • Gaston K.J. and Rodrigues A.S.L. (2003). Reserve selection in regions with poor biological data. Conserv. Biol. 17: 188–195

    Article  Google Scholar 

  • Gilbert B. and Lechowicz M.J. (2004). Neutrality, niches and dispersal in a temperate forest understory. Proc. Natl. Acad. Sci. USA 101: 7651–7656

    Article  PubMed  CAS  Google Scholar 

  • Hattori T. and Nakanishi S. 1982. Phytosociological system of the Camellietea janonicae. Bull. Fac. Educ. Kobe Univ. 71: 123–158 (in Japanese).

    Google Scholar 

  • Hawkins D.M. 2002. FIRM: Formal Inference-based Recursive Modeling. Ver. 3.0. ftp://ftp. stat.umn.edu/pub/FIRM/.

  • Hawkins D.M., Young S.S. and Rusinko III A. (1997). Analysis of a large structure-activity data set using recursive partitioning. Quantitative Structure Activity Relationships 16: 296–302

    Article  CAS  Google Scholar 

  • Jennings M.D. (2000). Gap analysis: concepts, methods and recent results. Landscape Ecol. 15: 5–20

    Article  Google Scholar 

  • Kaluzny S.P., Vega S.C., Cardoso T.P. and Shelly A.A. (1997). S+ Spatial Stats: User's Manual for Windows and Unix. MathSoftInc., Seattle

    Google Scholar 

  • Kira T. (1977). A climatological interpretation of Japanese vegetation zones. In: Miyawaki, A. and Tüxen, R. (eds) Vegetation Science and Environmental Protection, pp 21–30. Maruzen, Tokyo

    Google Scholar 

  • Kulldorff M. (1997). A spatial scan statistic. Communications in Statistics: Theory and Methods 26: 1481–1496

    Google Scholar 

  • Kulldorff M. and Information Management Services Inc. 2003. SatScan: Software for Spatial and Space Time Scan Statistics, Ver. 4.0. http://www.satscan.org/.

  • Kulldorff M., Tango T. and Park P.J. (2003). Power comparisons for disease clustering tests. Comput. Stat. Data Analysis 42: 665–684

    Article  Google Scholar 

  • Lancaster J. and Downes B.J. (2004). Spatial point pattern analysis of available and exploited resources. Ecography 27: 94–102

    Article  Google Scholar 

  • Lancaster J., Downes B.J. and Reich P. (2003). Linking landscape patterns of resource distribution with models of aggregation in ovipositing stream insects. J. Anim. Ecol. 72: 969–978

    Article  Google Scholar 

  • Margules C.R. and Pressey R.L. (2000). Systematic conservation planning. Nature 405: 243–253

    Article  PubMed  CAS  Google Scholar 

  • Mendel L.C. and Kirkpatrick J.B. (2002). Historical progress of biodiversity conservation in the protected-area system of TasmaniaAustralia. Conserv. Biol. 16: 1520–1529

    Article  Google Scholar 

  • NACS-J and WWF-Japan (1996). Red Data Book of Plant Communities in Japan. The Nature Conservation Society of Japan and World Wildlife Federation-Japan, Tokyo (in Japanese)

    Google Scholar 

  • Nakanishi S., Hattori T., Kajiwara Y. and Fujimura M. 1979. The Castanopsis type forest in the San-in district. Bull. Fac. Educ. Kobe Univ. 62: 37–58 (in Japanese).

    Google Scholar 

  • Nekola J.C. and White P.S. (2002). Conservation, the two pillars of ecological explanation and the paradigm of distance. Nat. Areas J. 22: 305–310

    Google Scholar 

  • Nicholls A.O. (1998). Integrating population abundancedynamics and distribution into broad-scale priority setting. In: Mace, G.M., Balmford, A. and Ginsberg, J.R. (eds) Conservation in a Changing World, pp 251–272. Cambridge University Press, Cambridge

    Google Scholar 

  • Patil G.P. and Taillie C. (2004). Upper level set scan statistic for detecting arbitrarily shaped hotspots. Environ. Ecol. Stat. 11: 183–197

    Article  Google Scholar 

  • Possingham H.P., Ball I. and Andelman S. (2000). Mathematical methods for identifying representative reserve networks. In: Ferson, S. and Burgman, M. (eds) Quantitative Methods for Conservation Biology, pp 291–306. Springer-Verlag, New York

    Chapter  Google Scholar 

  • Pressey R.L. (1994). Conserv. Biol. 8: 662–668

    Article  Google Scholar 

  • Pressey R.L. and Taffs K.H. (2001). Sampling of land types by protected areas: three measures of effectiveness applied to western New South Wales. Biol. Conserv. 101: 105–117

    Article  Google Scholar 

  • Pressey R.L., Ferrier S., Hager T.C., Woods C.A., Tully S.L. and Weinman K.M. (1996). How well protected are the forests of north-eastern New South Wales? Analyses of forest environments in relation to formal protection measures, land tenureand vulnerability to clearing. For. Ecol. Manage. 85: 311–333

    Article  Google Scholar 

  • Pressey R.L., Cowling R.M. and Rouget M. (2003). Formulating conservation targets for biodiversity pattern and process in the Cape Floristic Region, South Africa. Biol. Conserv. 112: 99–127

    Article  Google Scholar 

  • Ripley B.D. (1976). The second-order analysis of stationary point processes. J. Appl. Probab. 13: 255–266

    Article  Google Scholar 

  • Riitters K.H. and Coulston J.W. (2005). Hot spots of perforated forest in the Eastern United States. Environ. Manage. 35: 483–492

    Article  PubMed  Google Scholar 

  • Rodrigues A.S.L. and Gaston K.J. (2001). How large do reserve networks need to be?. Ecol. Lett. 4: 602–609

    Article  Google Scholar 

  • Rodrigues A.S.L., Gregory R.D. and Gaston K.J. (2000). Robustness of reserve selection procedures under temporal species turnover. Proc. R. Soc. Lond. B 267: 49–55

    Article  CAS  Google Scholar 

  • Rodrigues A.S.L., Andelman S.J., Bakarr M.I., Boitani L., Brooks T.M., Cowling R.M., Fishpool L.D.C., da Fonseca G.A.B., Gaston K.J., Hoffmann M., Long J.S., Marquet P.A., Pilgrim J.D., Pressey R.L., Schipper J., Sechrest W., Stuart S.N., Underhill L.G., Waller R.W., Watts M.E.J. and Yan X. (2004). Effectiveness of the global protected area network in representing species diversity. Nature 428: 640–643

    Article  PubMed  CAS  Google Scholar 

  • Rouget M., Richardson D.M. and Cowling R.M. (2003). The current configuration of protected areas in the Cape Floristic Region, South Africa: reservation bias and representation of biodiversity patterns and processes. Biol. Conserv. 112: 129–145

    Article  Google Scholar 

  • Rouget M., Richardson D.M., Milton S.J. and Polakow D. (2001). Predicting invasion dynamics of four alien Pinus species in a highly fragmented semi-arid shrubland in South Africa. Plant Ecol. 152: 79–92

    Article  Google Scholar 

  • Sætersdal M. and Birks H.J.B. (1993). Assessing the representativeness of nature reserves using multivariate analysis: vascular plants and breeding birds in deciduous forests, western Norway. Biol. Conserv. 65: 121–132

    Article  Google Scholar 

  • Scott J.M., Davis F.W., McGhie R.G., Wright R.G., Groves C. and Estes J. (2001a). Nature reserves: Do they capture the full range of America's biological diversity?. Ecol. Appl. 11: 999–1007

    Google Scholar 

  • Scott J.M., Murray M., Wright R.G., Csuti B., Morgan P. and Pressey R.L. (2001b). Representation of natural vegetation in protected areas: capturing the geographic range. Biodivers. Conserv. 10: 1297–1301

    Article  Google Scholar 

  • Shafer C.L. (2001). Inter-reserve distance. Biol. Conserv. 100: 215–227

    Article  Google Scholar 

  • Siitonen P., Tanskanen A. and Lehtinen A. (2002). Method for selection of old-forest reserves. Conserv. Biol. 16: 1398–1408

    Article  Google Scholar 

  • Soulé M.E. and Sanjayan M.A. (1998). Conservation targets: Do they help?. Science 279: 2060–2061

    Article  Google Scholar 

  • Tuomisto H., Ruokolainen K. and Yli-Halla M. (2003). Dispersal, environmentand floristic variation of western Amazonian forests. Science 299: 241–244

    Article  PubMed  CAS  Google Scholar 

  • Williams P.H. (1998). Key sites for conservation: area-selection methods for biodiversity. In: Mace, G.M., Balmford, A. and Ginsberg, J.R. (eds) Conservation in a Changing World, pp 211–249. Cambridge University Press, Cambridge

    Google Scholar 

  • Wright R.G., Scott J.M., Mann S. and Murray M. (2001). Identifying unprotected and potentially at risk plant communities in the western USA. Biol. Conserv. 98: 97–106

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikio Kamei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamei, M., Nakagoshi, N. Geographic Assessment of Present Protected Areas in Japan for Representativeness of Forest Communities. Biodivers Conserv 15, 4583–4600 (2006). https://doi.org/10.1007/s10531-005-5822-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-005-5822-x

Keywords

Navigation