Skip to main content

Advertisement

Log in

Tree invasions into treeless areas: mechanisms and ecosystem processes

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Non-native tree invasions occur not only in woodland or forest vegetation, but also into areas with little or no native tree presence. Limiting factors for tree establishment and survival include seasonal or annual drought, low nutrient availability, cold temperature extremes, fire, and other abiotic conditions to which trees are poorly adapted as well as biotic conditions such as herbivory and lack of soil mutualist inoculum. Tree invasions of grasslands and semi-arid riparian areas in particular are now widespread and frequently result in the rapid conversion of these habitats to woodlands or forests. In some cases, these invasions are the result of a change in extrinsic conditions such as climate, fire, and/or grazing that remove what have been previous barriers to tree establishment. However, in other cases, tree species with particular life-history and dispersal traits fill open niches or outcompete native species. Significant examples of tree invasion into treeless areas can be seen with invasions of Pinus species into temperate grasslands and fynbos shrublands, Melaleuca quinquenervia and Triadica sebifera into grassy wetlands, Prosopis and Tamarix species into semi-arid riparian zones, and Acacia and Morella invasions into nutrient-poor shrublands and barrens. The establishment of trees into treeless areas may have strong impacts on ecosystem processes, influencing biogeochemical cycling, carbon sequestration and cycling, and ecohydrology, as well possible edaphic legacies that persist even if trees are removed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aikio S, Duncan RP, Hulme PE (2010) Lag-phases in alien plant invasions: separating the facts from the artefacts. Oikos 119:370–378

    Article  Google Scholar 

  • Allen JA (1998) Mangroves as alien species: the case of Hawaii. Global Ecol Biogeogr Lett 7:61–67

    Article  Google Scholar 

  • Archer S (1989) Have southern Texas savannas been converted to woodlands in recent history. Am Nat 134:545–561

    Article  Google Scholar 

  • Archer S (1994) Woody plant encroachment into Southwestern grasslands and savannas: rates, patterns and proximate causes. In: Vavra M, Laycock W, Piepe R (eds) Ecological implications of livestock herbivory in the West. Soc Range Manage, Denver, pp 13–68

    Google Scholar 

  • Archer S, Scifres C, Bassham C, Maggio R (1988) Autogenic succession in a subtropical savanna: rates, dynamics and processes in the conversion of grassland to thorn woodland. Ecol Monogr 58:111–127

    Article  Google Scholar 

  • Archer S, Schimel DS, Holland EA (1995) Mechanisms of shrubland expansion: land use, climate or CO2? Climatic Change 29:91–99

    Article  Google Scholar 

  • Ashkannejhad S, Horton TR (2006) Ectomycorrhizal ecology under primary succession on coastal sand dunes: interactions involving Pinus contorta, suilloid fungi and deer. New Phytol 169:345–354

    Article  PubMed  Google Scholar 

  • Bahre CJ (1991) A legacy of change: historic human impact on vegetation of the Arizona borderlands. University of Arizona Press, Tucson 231 pp

    Google Scholar 

  • Bodel MJ, Ferriter A, Thayer DD (1994) The biology, distribution, and ecological consequences of Melaleuca quinquenervia in the Everglades. In: Davis SM, Ogden JC (eds) Everglades, the ecosystem and its restoration. St. Lucie Press, Delray Beach, pp 341–355

    Google Scholar 

  • Bond WJ, Midgley GF (2000) A proposed CO2-controlled mechanism of woody plant invasion in grasslands and savannas. Global Change Biol 6:865–870

    Article  Google Scholar 

  • Brock JH (1998) Invasion, ecology and management of Elaeagnus angustifolia (Russian olive) in the southwestern United States of America. In: Starfinger U, Edwards K, Kowarik I et al (eds) Plant invasions: ecological mechanisms and human responses. Backhuys, Leiden, pp 123–136

    Google Scholar 

  • Brown JR, Carter J (1998) Spatial and temporal patterns of exotic shrub invasion in Australian tropical grassland. Landsc Ecol 13:93–102

    Article  Google Scholar 

  • Browning DM, Archer SR, Asner GP, McClaran MP, Wessman CA (2008) Woody plants in grasslands: post-encroachment stand dynamics. Ecol Appl 18:928–944

    Article  PubMed  Google Scholar 

  • Bruce KA, Cameron GN, Harcombe PA (1995) Initiation of a new woodland type on the Texas coastal prairie by the Chinese tallow tree (Sapium sebiferum (L) Roxb). Bull Torrey Bot Club 122:215–225

    Article  Google Scholar 

  • Bruns TD, Peay KG, Boynton PJ, Grubisha LC, Hynson NA, Nguyen NH, Rosenstock NP (2009) Inoculum potential of Rhizopogon spores increases with time over the first 4 yr of a 99-yr spore burial experiment. New Phytol 181:463–470

    Article  PubMed  Google Scholar 

  • Carilla J, Grau HR (2010) 150 Years of tree establishment, land use and climate change in montane grasslands, northwest Argentina. Biotropica 42:49

    Article  Google Scholar 

  • Carlquist S (1974) Island biology. Columbia University Press, New York

  • Collier FA, Bidartondo MI (2009) Waiting for fungi: the ectomycorrhizal invasion of lowland heathlands. J Ecol 97:950–963

    Article  Google Scholar 

  • Coop JD, Givnish TJ (2008) Constraints on tree seedling establishment in montane grasslands of the Valles Caldera, New Mexico. Ecology 89:1101–1111

    Article  PubMed  Google Scholar 

  • Di Tomaso JM (1998) Impact, biology, and ecology of saltcedar (Tamarix spp.) in the Southwestern United States. Weed Techn 12:326–336

    Google Scholar 

  • Dickie IA, Reich PB (2005) Ectomycorrhizal fungal communities at forest edges. J Ecol 93:244–255

    Article  Google Scholar 

  • Dickie IA, Bolstridge N, Cooper JA, Peltzer DA (2010) Co-invasion by Pinus and its mycorrhizal fungi. New Phytol 187:475–484

    Article  PubMed  Google Scholar 

  • Dickie IA, Yeates GW, St J, Mark G, Stevenson BA, Scott JT, Rillig MC, Peltzer DA, Orwin KH, Kirschbaum MUF, Hunt JE, Burrows LE, Barbour MM, Aislabie J (2011) Ecosystem service and biodiversity trade-offs in two woody successions. J Appl Ecol 48:926–934

    Article  Google Scholar 

  • Dickie IA, Davis M, Carswell FE (2012) Quantification of mycorrhizal limitation in beech spread. NZ J Ecol 36:210–215

    Google Scholar 

  • Dickinson JC (1969) The eucalypt in the Sierra of southern Peru. Ann Assoc Am Geogr 59:294–307

    Article  Google Scholar 

  • Diez J (2005) Invasion biology of Australian ectomycorrhizal fungi introduced with eucalypt plantations into the Iberian Peninsula. Biol Invasions 7:3–15

    Article  Google Scholar 

  • Doughty R (2000) The eucalyptus: a natural and commercial history of the gum tree. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Duarte LS, Machado RE, Hartz SM, Pillar VD (2006) What saplings can tell us about forest expansion over natural grasslands. J Veg Sci 17:799–808

    Article  Google Scholar 

  • Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6:503–523

    Article  CAS  Google Scholar 

  • Elton CS (1958) The ecology of invasions by animals and plants. Metheun, London

    Book  Google Scholar 

  • Farley KA (2007) Grasslands to tree plantations: forest transition in the Andes of Ecuador. Ann Assoc Am Geogr 97:755–771

    Article  Google Scholar 

  • Gade D (1975) Plants, man and the land in the Vilcanota Valley of Peru. Junk Publishers, The Hague

    Book  Google Scholar 

  • Geesing D, Felker P, Bingham RL (2000) Influences of mesquite (Prosopis glandulosa) on soil nitrogen and carbon development: implications for global carbon sequestration. J Arid Environ 46:157–180

    Article  Google Scholar 

  • Glenn EP, Nagler PL (2005) Comparative ecophysiology of Tamarix ramosissima and native trees in western U.S. riparian zones. J Arid Environ 61:419–446

    Article  Google Scholar 

  • Grotkopp E, Rejmánek M, Rost TL (2002) Toward a causal explanation of plant invasiveness: seedling growth and life-history strategies of 29 pine (Pinus) species. Am Nat 159:396–419

    Article  PubMed  Google Scholar 

  • Guo LB, Gifford R (2002) Soil carbon stocks and land use change: a meta analysis. Global Change Biol 8:345–360

    Article  Google Scholar 

  • Hailu S, Demel T, Sileshi N, Fassil A (2004) Some biological characteristics that foster the invasion of Prosopis juliflora (Sw.) DC. at middle awash rift valley area, north- eastern Ethiopia. J Arid Environ 58:135–154

    Article  Google Scholar 

  • Halpern CB, Antos JA, Rice JM et al (2010) Tree invasion of a montane meadow complex: temporal trends, spatial patterns, and biotic interactions. J Veg Sci 21:717–732

    Google Scholar 

  • Hastings JR, Turner RM (1966) The changing mile. University of Arizona Press, Tucson

    Google Scholar 

  • Haugo RD, Halpern CB (2010) Tree age and tree species shape positive and negative interactions in a montane meadow. Botany 88:488–499

    Article  Google Scholar 

  • Hibbard KA, Schimel DS, Archer S, Ojima DS, Parton W (2003) Grassland to woodland transitions: integrating changes in landscape structure and biogeochemistry. Ecol Appl 13:911–926

    Article  Google Scholar 

  • Higgins SI, Scheiter S (2012) Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally. Nature. doi:10.1038/nature11238

    PubMed  Google Scholar 

  • Hofstede RGM, Groenendijk JP, Coppus R, Fehse JC, Sevink J (2002) Impact of pine plantations on soils and vegetation in the Ecuadorian high Andes. Mt Res Develop 22:159–167

    Article  Google Scholar 

  • Hopper SD (2009) OCBIL theory: towards an integrated understanding of the evolution, ecology and conservation of biodiversity on old, climatically buffered, infertile landscapes. Plant Soil 322:49–86

    Article  CAS  Google Scholar 

  • Huxman TE, Wilcox BP, Breshears D, Scott RL, Snyder KA, Small EE, Hultine K, Pockman WT, Jackson RB (2005) Ecohydrological implications of woody plant encroachment. Ecology 86:308–319

    Article  Google Scholar 

  • Idso SB (1992) Shrubland expansion in the American Southwest. Clim Change 22:85–86

    Article  Google Scholar 

  • Jackson RB, Banner JL, Jobbágy EG, Pockman WT, Wall DH (2002) Ecosystem carbon loss with woody plant invasion of grasslands. Nature 418:623–626

    Article  CAS  PubMed  Google Scholar 

  • Jäger H, Tye A, Kowarik I (2007) Tree invasion in naturally treeless environments: impacts of quinine (Cinchona pubescens) trees on native vegetation in Galapagos. Biol Conserv 140:297–307

    Article  Google Scholar 

  • Kaur R, Gonzáles WL, Llambi LD, Soriano PJ, Callaway RM et al (2012) Community impacts of Prosopis juliflora invasion: biogeographic and congeneric comparisons. PLoS ONE 7(9):e44966. doi:10.1371/journal.pone.0044966

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kleinbauer I, Dullinger S, Peterseil J, Essl F (2010) Climate change might drive the invasive tree Robinia pseudacacia into nature reserves and endangered habitats. Biol Conserv 143:382–390

    Article  Google Scholar 

  • Langdon B, Pauchard A, Aguayo M (2010) Pinus contorta invasion in the Chilean Patagonia: local patterns in a global context. Biol Invasions 12:3961–3971

    Article  Google Scholar 

  • Le Maitre DC, Versfeld DB, Chapman RA (2000) The impact of invading alien plants on surface water resources in South Africa: a preliminary assessment. Water SA 26:397–407

    Google Scholar 

  • Le Maitre DC, Gaertner M, Marchante E, Ens EJ, Holmes PM, Pauchard A, O’Farrell PJ, Rogers AM, Blanchard R, Blignaut J, Richardson DM (2011) Impacts of invasive Australian acacias: implications for management and restoration. Divers Distrib 17:1015–1029

    Article  Google Scholar 

  • League K, Veblen T (2006) Climatic variability and episodic Pinus ponderosa establishment along the forest-grassland ecotones of Colorado. For Ecol Manag 228:98–107

    Article  Google Scholar 

  • Ledgard N (2001) The spread of lodgepole pine (Pinus contorta, Dougl.) in New Zealand. For Ecol Manag 141:43–57

    Article  Google Scholar 

  • Luzar J (2007) The political ecology of a “forest transition”: eucalyptus forestry in the southern Peruvian Andes. Ethnobot Res Appl 5:85–93

    Google Scholar 

  • MacDougall AS, Gilbert B, Levine JM (2009) Plant invasions and the niche. J Ecol 97:609–615

    Article  Google Scholar 

  • Mack RN (2003) Phylogenetic constraint, absent life forms, and preadapted alien plants: a prescription for biological invasions. Intern J Plant Sci 164:S185–S196

    Article  Google Scholar 

  • Martin MR, Tipping PW, Sickman JO (2009) Invasion by an exotic tree alters above and belowground ecosystem components. Biol Invasions 11:1883–1894

    Article  Google Scholar 

  • Marx DH (1991) The practical significance of ectomycorrhizae in forest establishment. Ecophysiology of ectomycorrhizae of forest trees. Marcus Wallenberg Foundation, Falun, Sweden, pp 54–90

    Google Scholar 

  • Mazia CN, Chaneton EJ, Ghersa CM, León JC (2001) Limits to tree species invasion in Pampean grassland and forest plant communities. Oecologia 128:594–602

    Article  Google Scholar 

  • McClaran MP (2003) A century of vegetation change on the Santa Rita experimental range. Pages 16–33 in Santa Rita experimental range: one-hundred years (1903–2003) of accomplishments and contributions. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Tucson, Arizona

  • Merritt DM, Poff NL (2010) Shifting dominance of riparian Populus and Tamarix along gradients of flow alteration in western North American rivers. Ecol Appl 20:135–152

    Article  PubMed  Google Scholar 

  • Merritt DM, Shafroth PB (2012) Edaphic, salinity, and stand structural trends in chronosequences of native and non-native dominated riparian forests along the Colorado River, USA. Biol Invasions 14:2665–2685

    Article  Google Scholar 

  • Miller EA, Halpern CB (1998) Effects of environment and grazing disturbance on tree establishment in meadows of the central Cascade Range, Oregon, USA. J Veg Sci 9:265–282

    Article  CAS  Google Scholar 

  • Mitchell B (1991) Peasants on the edge: crop, culture, and crisis in the Andes. University of Texas Press, Austin

    Google Scholar 

  • Mooney HA (2008) The globalization of ecological thought. Ecology Institute, Oldendorf/Luhe, Germany

    Google Scholar 

  • Nuñez MA, Horton TR, Simberloff D (2009) Lack of belowground mutualisms hinders Pinaceae invasions. Ecology 90:2352–2359

    Article  PubMed  Google Scholar 

  • Pattison RR, Mack RN (2008) Potential distribution of the invasive tree Triadica sebifera (Euphorbiaceae) in the United States: evaluating CLIMEX predictions with field trials. Glob Change Biol 14:813–826

    Article  Google Scholar 

  • Peña E, Hidalgo M, Langdon B, Pauchard A (2008) Patterns of spread of Pinus contorta Dougl. ex Loud in a natural reserve in southern South America. For Ecol Manag 256:1049–1054

    Article  Google Scholar 

  • Pillar VD, Quadros FLF (1997) Grassland–forest boundaries in southern Brazil. Coenoses 12:119–126

    Google Scholar 

  • Polley HW, Johnson HB, Mayeaux HS (1994) Increasing CO2: competitive responses of the C4 grass Schizachyrium and grassland Prosopis. Ecology 75:976–988

    Article  Google Scholar 

  • Pringle A, Bever JD, Gardes M, Parrent JL, Rillig MC, Klironomos JN (2009) Mycorrhizal symbioses and plant invasions. Ann Rev Ecol Evol Syst 40:699–715

    Article  Google Scholar 

  • Rice JM, Halpern CB, Antos JA et al (2012) Spatio-temporal patterns of tree establishment are indicative of biotic interactions during early invasion of a montane meadow. Plant Ecol 213:555–568

    Article  Google Scholar 

  • Richardson DM, Bond WJ (1991) Determinants of plant distribution: evidence from pine invasions. Am Nat 137:639–668

    Article  Google Scholar 

  • Richardson DM, Cowling RM (1992) Why is mountain fynbos invasible and which species invade? In: Van Wilgen BW, Richardson DM, Kruger FJ, van Hensbergen HJ (eds) Fire in South African mountain fynbos. Springer, Berlin, pp 161–181

    Chapter  Google Scholar 

  • Richardson DM, Gaertner M (2013) Plant invasions as builders and shapers of novel ecosystems. In: Hobbs RJ, Higgs EC, Hall CM (eds) Novel ecosystems: intervening in the new ecological world order. Wiley-Blackwell, Oxford, pp 102–114

  • Richardson DM, Higgins SI (1998) Pines as invaders in the southern hemisphere. In: Richardson DM (ed) Ecology and biogeography of Pinus. Cambridge University Press, Cambridge, pp 450–473

  • Richardson DM, Rejmánek M (2011) Trees and shrubs as invasive alien species—a global review. Divers Distrib 17:788–809

    Article  Google Scholar 

  • Richardson DM, van Wilgen BW (2004) Invasive alien plants in South Africa; how well do we understand the ecological impacts? S Afr J Sci 100:45–52

    Google Scholar 

  • Richardson DM, Williams PA, Hobbs RJ (1994) Pine invasions in the Southern Hemisphere: determinants of spread and invadability. J Biogeogr 21:511–527

    Article  Google Scholar 

  • Richardson DM, Allsopp N, D’Antonio CM, Milton SJ, Rejmánek M (2000) Plant invasions: the role of mutualisms. Biol Rev 75:65–93

    Article  CAS  PubMed  Google Scholar 

  • Richardson DM, van Wilgen BW, Nuñez MA (2008) Alien conifer invasions in South America: short fuse burning? Biol Invasions 10:573–577

    Article  Google Scholar 

  • Rudel TK, Coomes OT, Moran E, Achard F, Angelsen A, Xu J, Lambin E (2005) Forest transition: towards a global understanding of land use change. Global Environ Change 15:23–31

    Article  Google Scholar 

  • Rundel PW, Nilsen ET, Sharifi M, Virginia R, Jarrell W, Kohl D, Shearer G (1982) Seasonal dynamics of nitrogen cycling for a Prosopis woodland in the Sonoran Desert. Plant Soil 67:343–353

    Article  CAS  Google Scholar 

  • Salgado Salomón ME, Barroetaveña C, Rajchenberg M (2011) Do pine plantations provide mycorrhizal inocula for seedlings establishment in grasslands from Patagonia, Argentina? New For 41:191–205

    Article  Google Scholar 

  • Scholes RJ, Archer SR (1997) Tree–grass interactions in savannas. Ann Rev Ecol Syst 28:517544

    Article  Google Scholar 

  • Serbesoff-King K (2003) Melaleuca in Florida: a literature review on the taxonomy, distribution, biology, ecology, economic importance and control measures. J Aquatic Plant Manag 41:98–112

    Google Scholar 

  • Shafroth PB, Auble GT, Scott ML (1995) Germination and establishment of native plains cottonwood (Populus deltoides Marshall subsp. monilifera) and the exotic Russian-olive (Elaeagnus angustifolia L.). Conserv Biol 9:1169–1175

    Article  Google Scholar 

  • Shafroth PB, Cleverly JR, Dudley L, Stuart J, Taylor JP, van Riper C, Weeks EP (2005) Control of Tamarix in the western U.S.—implications for water salvage, wildlife use, and riparian restoration. Environ Manag 35:231–246

    Article  Google Scholar 

  • Simberloff D (2011) Charles Elton. Neither founder nor siren, but prophet. In: Richardson DM (ed) Fifty years of invasion ecology. The legacy of Charles Elton, Wiley-Blackwell, Oxford, pp 11–24

    Google Scholar 

  • Simberloff D, Nuñez MA, Ledgard NJ et al (2010) Spread and impact of introduced conifers in South America: lessons from other southern hemisphere regions. Austral Ecol 35:489–504

    Article  Google Scholar 

  • Stromberg JC, Chew MK, Nagler PL, Glenn EP (2009) Changing perceptions of change: the role of scientists in Tamarix and river management. Restor Ecol 17:177–186

    Article  Google Scholar 

  • Terwilliger J, Pastor J (1999) Small mammals, ectomycorrhizae, and conifer succession in beaver meadows. Oikos 85:83–94

    Article  Google Scholar 

  • Vale TR (1981) Tree invasion of montane meadows in Oregon. Am Midl Nat 105:61–69

    Article  Google Scholar 

  • Van Auken OW (2000) Shrub invasions of North American semiarid grasslands. Ann Rev Ecol Syst 31:197–215

    Article  Google Scholar 

  • van Wesenbeeck B, van Mourik T, Duivenvoorden JF, Cleef AM (2003) Strong effects of a plantation with Pinus patula on Andean subpáramo vegetation: a case study from Colombia. Biol Conserv 114:207–218

    Article  Google Scholar 

  • Vitousek PM, Walker LR (1989) Biological Invasion by Myrica faya in Hawaii—plant demography, nitrogen-fixation, ecosystem effects. Ecol Monogr 59:247–265

    Article  Google Scholar 

  • Wardle P (1985) New Zealand timberlines. 3. A synthesis. NZ J Bot 23:263–271

    Article  Google Scholar 

  • Wiemken V, Boller T (2006) Delayed succession from alpine grassland to savannah with upright pine: limitation by ectomycorrhiza formation? For Ecol Manag 237:492–502

    Article  Google Scholar 

  • Zalba SM, Villamil CB (2002) Woody plant invasion in relictual grasslands. Biol Invas 4:55–72

    Article  Google Scholar 

Download references

Acknowledgments

PWR is grateful for support from the University of California Los Angeles and the Stunt Ranch Santa Monica Mountains Reserve. IAD acknowledges Core funding for Crown Research Institutes from the New Zealand Ministry of Business, Innovation and Employment’s Science and Innovation Group. DMR acknowledges support from the DST-NRF Centre of Excellence for Invasion Biology and the National Research Foundation (grant 85417). The Oppenheimer Memorial Trust funded DMR’s participation in the workshop at Bariloche, Argentina, in September 2012 at which an early version of this paper was tabled. We thank all delegates at the workshop for their contributions to the ideas that are presented here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip W. Rundel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rundel, P.W., Dickie, I.A. & Richardson, D.M. Tree invasions into treeless areas: mechanisms and ecosystem processes. Biol Invasions 16, 663–675 (2014). https://doi.org/10.1007/s10530-013-0614-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-013-0614-9

Keywords

Navigation