Skip to main content

Advertisement

Log in

Unlocking the potential of Google Earth as a tool in invasion science

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Distribution data are central to many invasion science applications. The shortage of good information on the distribution of alien species and their spatial dynamics is largely attributable to the cost, effort and expertise required to monitor these species over large areas. Virtual globes, particularly Google Earth, are free and user-friendly software which provide high-resolution aerial imagery for the entire globe. We suggest this has enormous potential for invasion science. We provide suggestions and tools for gathering data on the distribution and abundance of invasive alien trees using visual interpretation of Google Earth imagery, and propose how these data may be used for a number of purposes, including calculating useful metrics of invasions, prioritising species or areas for management and predicting potential distributions of species. We also suggest various practical uses of Google Earth, such as providing a tool for early detection of emerging invasions, monitoring invasions over time, and to help researchers and managers identify suitable field study sites. Virtual globes such as Google Earth are not without limitations and we provide guidance on how some of these can be overcome, or when imagery from Google Earth may not be fit for invasion science purposes. Because of Google Earth’s huge popularity and ease of use, we also highlight possibilities for awareness-raising and information sharing that it provides. Finally, we provide the foundations and guidelines for a virtual global network of sentinel sites for early detection, monitoring and data gathering of invasive alien trees, which we propose should be developed as part of a “citizen science” effort. There has been limited use of virtual globes by invasion scientists and managers; it is our hope that this paper will stimulate their greater use, both within the field of invasion science and within ecology generally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahern RG, Landis DA, Reznicek AA, Schemske DW (2010) Spread of exotic plants in the landscape: the role of time, growth habit, and history of invasiveness. Biol Invasions 12:3157–3169

    Article  Google Scholar 

  • Alston KP, Richardson DM (2006) The roles of habitat features, disturbance, and distance from putative source populations in structuring alien plant invasions at the urban/wildland interface on the Cape Peninsula, South Africa. Biol Cons 132:183–198

    Article  Google Scholar 

  • Asner GP, Huang C-Y (2011) Remote sensing. In: Simberloff D, Rejmánek M (eds) Encyclopedia of biological invasions, vol 3. University of California Press, Berkeley, pp 580–584

    Google Scholar 

  • Aurambout JP, Pettit C (2008) Digital globes: gates to the digital Earth In: Ehlers M, Behncke K, Gerstengarbe F-W, Hillen F, Koppers L, Stroink L, Wächter J (eds) Digital earth summit on geoinformatics 2008: tools for global change research. Wichmann, Heidelberg, pp 233–238

  • Becker RH, Zmijewski KA, Crail T (2013) Seeing the forest for the invasives: mapping buckthorn in the Oak Openings. Biol Invasions 15:1–12

    Article  Google Scholar 

  • Begall S, Červený J, Neef J, Vojtěch O, Burda H (2008) Magnetic alignment in grazing and resting cattle and deer. Proc Natl Acad Sci USA 105:13451–13455

    Article  CAS  PubMed  Google Scholar 

  • Benker CS, Langford RP, Pavlis TL (2011) Positional accuracy of the Google Earth terrain model derived from stratigraphic unconformities in the Big Bend region, Texas, USA. Geocarto Int 26:291–303

    Article  Google Scholar 

  • Biradar CM, Thenkabail PS, Noojipady P, Li Y, Dheeravath V, Turral H, Velpuri M, Gumma MK, Gangalakunta ORP, Cai XL, Xiao X, Schull MA, Alankara RD, Gunasinghe S, Mohideen S (2009) A global map of rainfed cropland areas (GMRCA) at the end of last millennium using remote sensing. Int J Appl Earth Obs 11:114–129

    Article  Google Scholar 

  • Boschetti M, Boschetti L, Oliveri S, Casati L, Canova I (2007) Tree species mapping with Airborne hyper-spectral MIVIS data: the Ticino Park study case. Int J Remote Sens 28:1251–1261

    Article  Google Scholar 

  • Bradley BA, Fleishman E (2008) Relationships between expanding pinyon–juniper cover and topography in the central Great Basin, Nevada. J Biogeogr 35:951–964

    Article  Google Scholar 

  • Breshears DD, Cobb NS, Rich PM, Price KP, Allen CD, Balice RG, Romme WH, Kastens JH, Floyd ML, Belnap J, Anderson JJ, Myers OB, Meyer CW (2005) Regional vegetation die-off in response to global-change-type drought. Proc Natl Acad Sci USA 102:15144–15148

    Article  CAS  PubMed  Google Scholar 

  • Butler D (2006) Virtual globes: the web-wide world. Nature 439:776–778

    Article  CAS  PubMed  Google Scholar 

  • Castro-Díez P, Godoy O, Saldaña A, Richardson DM (2011) Predicting invasiveness of Australian Acacia species on the basis of their native climatic affinities, life-history traits and human use. Divers Distrib 17:934–945

    Article  Google Scholar 

  • Catford JA, Vesk PA, Richardson DM, Pyšek P (2012) Quantifying levels of biological invasion: towards the objective classification of invaded and invasible ecosystems. Global Change Biol 18:44–62

    Article  Google Scholar 

  • Chytrý M, Pyšek P, Wild J, Pino J, Maskell LC, Vilà M (2009) European map of alien plant invasions based on the quantitative assessment across habitats. Divers Distrib 15:98–107

    Google Scholar 

  • Conroy GC, Anemone RL, Van Regenmorter J, Addison A (2008) Google Earth, GIS, and the Great Divide: a new and simple method for sharing paleontological data. J Hum Evol 55:751–755

    Article  PubMed  Google Scholar 

  • Development Core Team R (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Dodet M, Collet C (2012) When should exotic forest plantation tree species be considered as an invasive threat and how should we treat them? Biol Invasions 14:1765–1778

    Article  Google Scholar 

  • ESRI (2009) ArcGIS. Environmental Systems Resource Institute, Redlands

    Google Scholar 

  • Fairbanks DHK, Thompson MW, Vink DE, Newby TS, Van den Berg HM, Everard DA (2000) South African land-cover characteristics database: a synopsis of the landscape. S Afr J Sci 96:69–82

    Google Scholar 

  • Forsyth GG, Richardson DM, Brown PJ, van Wilgen BW (2004) Rapid assessment of the invasive status of Eucalyptus species in two South African provinces. S Afr J Sci 100:77

    Google Scholar 

  • Freedman DO, Kozarsky PE, Weld LH, Cetron MS (2008) GeoSentinel: the global emerging infections sentinel network of the International Society of Travel Medicine. J Travel Med 6:94–98

    Article  Google Scholar 

  • Fuller DO (2005) Remote detection of invasive Melaleuca trees (Melaleuca quinquenervia) in South Florida with multispectral IKONOS imagery. Int J Remote Sens 26:1057–1063

    Article  Google Scholar 

  • Gallagher RV, Leishman MR, Miller JT, Hui C, Richardson DM, Suda J, Trávníček P (2011) Invasiveness in introduced Australian acacias: the role of species traits and genome size. Divers Distrib 17:884–897

    Article  Google Scholar 

  • Goodchild MF, Guo H, Annoni A, Bian L, de Bie K, Campbell F, Craglia M, Ehlers M, van Genderen J, Jackson D, Lewis AJ, Pesaresi M, Remetey-Fülöpp G, Simpson R, Skidmore A, Wang C, Woodgate P (2012) Next-generation Digital Earth. Proc Natl Acad Sci USA 109:11088–11094

    Article  CAS  PubMed  Google Scholar 

  • Google Earth Blog (2009) Improving Google Earth base imagery. http://www.gearthblog.com/blog/archives/2009/06/improving_google_earth_imagery.html. Accessed 6 June 2013

  • Google Earth User Guide (2013) Google Earth User Guide. http://support.google.com/earth/bin/answer.py?hl=en&answer=2445445. Accessed 6 June 2013

  • Gundale MJ, Pauchard A, Langdon B, Peltzer DA, Maxwell BD, Nuñez MA (2014) Can model species be used to advance the field of invasion ecology? Biol Invasions (in press)

  • Higgins SI, Richardson DM, Cowling RM (2000) Using a dynamic landscape model for planning the management of alien plant invasions. Ecol Appl 10:1833–1848

    Article  Google Scholar 

  • Higgins SI, Richardson DM, Cowling RM (2001) Validation of a spatial simulation model of a spreading alien plant population. J Appl Ecol 38:571–584

    Article  Google Scholar 

  • Huang C-Y, Asner GP (2009) Applications of remote sensing to alien invasive plant studies. Sensors 9:4869–4889

    Article  PubMed  Google Scholar 

  • Huang C-Y, Asner GP, Martin RE, Barger NN, Neff JC (2009) Multiscale analysis of tree cover and aboveground carbon stocks in pinyon-juniper woodlands. Ecol Appl 19:668–681

    Article  CAS  PubMed  Google Scholar 

  • Huang D, Zhang R, Kim KC, Suarez AV (2012) Spatial pattern and determinants of the first detection locations of invasive alien species in mainland China. PLoS One 7:e31734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes BJ, Martin GR, Reynolds SJ (2011) The use of Google EarthTM satellite imagery to detect the nests of masked boobies Sula dactylatra. Wildlife Biol 17:210–216

    Article  Google Scholar 

  • Hulme PE (2006) Beyond control: wider implications for the management of biological invasions. J Appl Ecol 43:835–847

    Article  Google Scholar 

  • Hulme PE (2011) Addressing the threat to biodiversity from botanic gardens. Trends Ecol Evol 26:168–174

    Article  PubMed  Google Scholar 

  • Jennings SB, Brown ND, Sheil D (1999) Assessing forest canopies and understorey illumination: canopy closure, canopy cover and other measures. Forestry 72:59–74

    Article  Google Scholar 

  • Joseph G (2005) Data Analysis. In: Joseph G (ed) Fundamentals of remote sensing, 2nd edn. Universities Press, India, pp 319–348

    Google Scholar 

  • Kotzé I, Beukes H, Van den Berg E, Newby T (2010) National invasive alien plant survey. Report Number: GW/A/2010/21, Agricultural Research Council, Pretoria

  • Kueffer C, McDougall K, Alexander J, Daehler C, Edwards P, Haider S, Milbau A, Parks C, Pauchard A, Reshi ZA, Rew LJ, Schroder M, Seipel T (2013) Plant invasions into mountain protected areas: assessment, prevention and control at multiple spatial scales. In: Foxcroft LC, Richardson DM, Pyšek P, Genovesi P (eds) Plant invasions in protected areas: patterns, problems and challenges. Invading Nature Series. Springer, Berlin (in press)

  • Langdon B, Pauchard A, Aguayo M (2010) Pinus contorta invasion in the Chilean Patagonia: local patterns in a global context. Biol Invasions 12:3961–3971

    Article  Google Scholar 

  • Lass LW, Prather TS, Glenn NF, Weber KT, Mundt JT, Pettingill J (2005) A review of remote sensing of invasive weeds and example of the early detection of spotted knapweed (Centaurea maculosa) and babysbreath (Gypsophila paniculata) with a hyperspectral sensor. Weed Sci 53:242–251

    Article  CAS  Google Scholar 

  • Le Maitre DC, van Wilgen BW, Gelderblom CM, Bailey C, Chapman RA, Nel JA (2002) Invasive alien trees and water resources in South Africa: case studies of the costs and benefits of management. Forest Ecol Manag 160:143–159

    Article  Google Scholar 

  • Levine JM, D’Antonio CM (2003) Forecasting biological invasions with increasing international trade. Conserv Biol 17:322–326

    Article  Google Scholar 

  • Maxwell BD, Lehnhoff E, Rew LJ (2009) The rationale for monitoring invasive plant populations as a crucial step for management. Invasive Plant Sci Manag 2:1–9

    Article  Google Scholar 

  • Mehta SV, Haight RG, Homans FR, Polasky S, Venette RC (2007) Optimal detection and control strategies for invasive species management. Ecol Econ 61:237–245

    Article  Google Scholar 

  • Meyerson LA, Mooney HA (2007) Invasive alien species in an era of globalization. Front Ecol Env 5:199–208

    Article  Google Scholar 

  • Mumby PJ, Green EP, Edwards AJ, Clark CD (1999) The cost-effectiveness of remote sensing for tropical coastal resources assessment and management. J Environ Manage 55:157–166

    Article  Google Scholar 

  • Osunkoya OO, Perrett C, Fernando C, Clark C, Raghu S (2012) Stand dynamics and spatial patterns across varying sites in the invasive Lantana camara L. (Verbenaceae). Plant Ecol 213:883–897

    Article  Google Scholar 

  • Pauchard A, Maheu-Giroux M (2007) Case study 11.1: Acacia dealbata invasion across multiple scales: Conspicuous flowering species can help us study invasion pattern and processes (pp 166–167). In: Strand H, Höft R, Strittholt J, Miles L, Horning N, Fosnight E (eds) Sourcebook on remote sensing and biodiversity indicators. Technical Series no. 32. Secretariat of the Convention on Biological Diversity, Montreal, pp 161–177

  • Pauchard A, Kueffer C, McDougall K, Alexander J, MIREN Consortium (2009) Global networks: a reply to Khuroo et al. Front Ecol Environ 7:518

    Article  Google Scholar 

  • Perrings C, Dalmazzone S, Williamson M, Mooney HA, Mack RN, McNeely JA et al (2005) The economics of biological invasions. In: Mooney HA, Mack RN, McNeely JA, Neville LE, Schei PJ, Waage JK (eds) Invasive alien species: a new synthesis. Island Press, Washington, pp 16–35

    Google Scholar 

  • Pimentel D, Lach L, Zuniga R, Morrison D (2000) Environmental and economic costs of nonindigenous species in the United States. Bioscience 50:53–65

    Article  Google Scholar 

  • Potere D (2008) Horizontal positional accuracy of Google Earth’s high-resolution imagery archive. Sensors 8:7973–7981

    Article  Google Scholar 

  • Quantum GIS Development Team (2012). Quantum GIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org

  • Rejmánek M, Pitcairn MJ (2002) When is eradication of exotic pest plants a realistic goal? In: Veitch CR, Clout MN (eds) Turning the tide: the eradication of invasive species. Occasional papers of the IUCN Species Survival Commission. Issue 27 of IUCN occasional paper, pp 249–253

  • Richardson DM (1998) Forestry trees as invasive aliens. Conserv Biol 12:18–26

    Article  Google Scholar 

  • Richardson DM, Brown PJ (1986) Invasion of mesic mountain fynbos by Pinus radiata. S Afr J Bot 52:529–536

    Google Scholar 

  • Richardson DM, Rejmánek M (2004) Conifers as invasive aliens: a global survey and predictive framework. Divers Distrib 10:321–331

    Article  Google Scholar 

  • Richardson DM, Rejmánek M (2011) Trees and shrubs as invasive alien species–a global review. Divers Distrib 17:788–809

    Article  Google Scholar 

  • Richardson DM, Thuiller W (2007) Home away from home—objective mapping of high-risk source areas for plant introductions. Divers Distrib 13:299–312

    Article  Google Scholar 

  • Richardson DM, van Wilgen BW (2004) Invasive alien plants in South Africa: how well do we understand the ecological impacts? S Afr J Sci 100:45–52

    Google Scholar 

  • Richardson DM, Rouget M, Rejmánek M (2004) Using natural experiments in the study of alien tree invasions: Opportunities and limitations. In: Gordon MS, Bartol SM (eds) Experimental approaches to conservation biology. University of California Press, Berkeley, pp 180–201

    Chapter  Google Scholar 

  • Richardson DM, van Wilgen BW, Nunez M (2008) Alien conifer invasions in South America—short fuse burning? Biol Invasions 10:573–577

    Article  Google Scholar 

  • Richardson DM, Carruthers J, Hui C, Impson FA, Miller JT, Robertson MP, Rouget M, Le Roux JJ, Wilson JR (2011) Human-mediated introductions of Australian acacias–a global experiment in biogeography. Divers Distrib 17:771–787

    Article  Google Scholar 

  • Robinson TP, van Klinken RD, Metternicht G (2008) Spatial and temporal rates and patterns of mesquite (Prosopis species) invasion in Western Australia. J Arid Environ 72:175–188

    Article  Google Scholar 

  • Rouget M, Richardson DM (2003) Inferring process from pattern in plant invasions: a semimechanistic model incorporating propagule pressure and environmental factors. Am Nat 162:713–724

    Article  PubMed  Google Scholar 

  • Roura-Pascual N, Richardson DM, Krug R, Brown A, Chapman RA, Forsyth GG, Le Maitre DC, Robertson M, Stafford L, van Wilgen BW, Wannenburg A, Wessels N (2009) Ecology and management of alien plant invasions in South African fynbos: accommodating key complexities in objective decision making. Biol Conserv 142:1595–1604

    Article  Google Scholar 

  • Roura-Pascual N, Krug RM, Richardson DM, Hui C (2010) Spatially-explicit sensitivity analysis for conservation management: exploring the influence of decisions in invasive alien plant management. Divers Distrib 16:426–438

    Article  Google Scholar 

  • Rundel PW, Dickie IA, Richardson DM (2014) Tree invasions into treeless areas: Mechanisms and ecosystem processes. Biol Invasions. doi:10.1007/s10530-013-0614-9

  • Sagarin R, Pauchard A (2010) Observational approaches in ecology open new ground in a changing world. Front Ecol Environ 8:379–386

    Article  Google Scholar 

  • Sato HP, Harp EL (2009) Interpretation of earthquake-induced landslides triggered by the 12 May 2008, M7.9 Wenchuan earthquake in the Beichuan area, Sichuan Province, China using satellite imagery and Google Earth. Landslides 6:153–159

    Article  Google Scholar 

  • Sedjo RA (1999) The potential of high-yield plantation forestry for meeting timber needs. New For 17:339–359

    Article  Google Scholar 

  • Silvertown J (2009) A new dawn for citizen science. Trends Ecol Evol 24:467–471

    Article  PubMed  Google Scholar 

  • Sserwanga A, Harris JC, Kigozi R, Menon M, Bukirwa H, Gasasira A, Kakeeto S, Kizito F, Quinto E, Rubahika D, Nasr S, Filler S, Kamya MR, Dorsey G (2011) Improved malaria case management through the implementation of a health facility-based sentinel site surveillance system in Uganda. PLoS ONE 6:e16316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stensgaard AS, Saarnak CF, Utzinger J, Vounatsou P, Simoonga C, Mushinge G, Rahbek C, Møhlenberg F, Kristensen TK (2009) Virtual globes and geospatial health: the potential of new tools in the management and control of vector-borne diseases. Geospatial Health 3:127–141

    PubMed  Google Scholar 

  • Stow D, Hope A, Richardson D, Chen D, Garrison C, Service D (2000) Potential of colour-infrared digital camera imagery for inventory and mapping of alien plant invasions in South African shrublands. Int J Remote Sens 21:2965–2970

    Article  Google Scholar 

  • Taylor BT, Fernando P, Bauman AE, Williamson A, Craig JC, Redman S (2011) Measuring the quality of public open space using Google Earth. Am J Prev Med 40:105–112

    Article  PubMed  Google Scholar 

  • Thuiller W, Richardson DM, Pyšek P, Midgley GF, Hughes GO, Rouget M (2005) Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Glob Change Biol 11:2234–2250

    Article  Google Scholar 

  • Underwood E, Ustin S, Pauchard S, Maheu-Giroux M, Browne M (2007) Trends in invasive alien species. In: Strittholt J, Miles L, Horning N, Fosnight E (eds) Sourcebook on remote sensing and biodiversity indicators. Secretariat of the Convention on Biological Diversity, Montreal, Technical Series, no. 32, pp 160–177

  • van Wilgen BW, Richardson DM (2012) Three centuries of managing introduced conifers in South Africa: benefits, impacts, changing perceptions and conflict resolution. J Environ Manage 106:56–68

    Article  PubMed  Google Scholar 

  • van Wilgen BW, Richardson DM, Le Maitre DC, Marais C, Magadlela D (2001) The economic consequences of alien plant invasions: examples of impacts and approaches to sustainable management in South Africa. Environ Dev Sustain 3:145–168

    Article  Google Scholar 

  • van Wilgen BW, Reyers B, Le Maitre DC, Richardson DM, Schonegevel L (2008) A biome-scale assessment of the impact of invasive alien plants on ecosystem services in South Africa. J Environ Manage 89:336–349

    Article  PubMed  Google Scholar 

  • van Wilgen BW, Forsyth GG, Le Maitre DC, Wannenburgh A, Kotzé JD, van den Berg E, Henderson L (2012) An assessment of the effectiveness of a large, national-scale invasive alien plant control strategy in South Africa. Biol Conserv 148:28–38

    Article  Google Scholar 

  • Westbrooks R (2003) A National Early Detection and Rapid Response System for Invasive Plants in the United States: Conceptual Design. Federal Interagency Committee for the Management of Noxious and Exotic Weeds (FICMNEW)

  • Wilson JRU, Caplat P, Dickie IA Hui C, Maxwell BD, Nuñez MA, Pauchard A, Rejmánek M, Richardson DM, Robertson MP, Spear D, Webber BL, van Wilgen BW, Zenni RD (2014) A standardized set of metrics to assess and monitor tree invasions. Biol Invasions. doi:10.1007/s10530-013-0605-x

  • Yang K, Sun L-P, Huang Y-X, Yang G-J, Feng W, Hang D-R, Li W, Zhang J-F, Liang Y-S, Zhou X-N (2012) A real-time platform for monitoring schistosomiasis transmission supported by Google Earth and a web-based geographical information system. Geospatial Health 6:195–203

    PubMed  Google Scholar 

  • Yu L, Gong P (2012) Google Earth as a virtual globe tool for Earth science applications at the global scale: progress and perspectives. Int J Remote Sens 33:3966–3986

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the DST-NRF Centre of Excellence for Invasion Biology. Funding from the Oppenheimer Memorial Trust allowed VV and DMR to participate in the tree invasions workshop in Bariloche, Argentina, in September 2012 at which an early version of this paper was presented. We thank all delegates at the workshop for useful discussion and suggestions that have improved the paper. DMR acknowledges additional funding from the National Research Foundation (grant 85417) and the Hans Sigrist Foundation. Jocelyn Esquivel conducted the image photointerpretation for the Acacia dealbata aerial photography. AP funded by Fondecyt 1100792, ICM P05-002 and CONICYT PFB-23.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vernon Visser.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Visser, V., Langdon, B., Pauchard, A. et al. Unlocking the potential of Google Earth as a tool in invasion science. Biol Invasions 16, 513–534 (2014). https://doi.org/10.1007/s10530-013-0604-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-013-0604-y

Keywords

Navigation