Skip to main content
Log in

Genetic control of invasive fish: technological options and its role in integrated pest management

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Genetic options for the control of invasive fishes were recently reviewed and synthesized at a 2010 international symposium, held in Minneapolis/St. Paul, MN, USA. The only option currently available “off-the-shelf” is triploidy, which can be used to produce sterile males for a release program analogous to those widely and successfully used for biological control of insect pests. However, the Trojan Y and several recombinant options that heritably distort pest population sex ratios are technologically feasible, are at or are close to proof-of-concept stage and are potentially much more effective than sterile male release programs. All genetic options at this stage require prolonged stocking programs to be effective, though gene drive systems are a potential for recombinant approaches. They are also likely to differ in their current degree of social acceptability, with chromosomal approaches (triploidy and Trojan Y) likely to be the most readily acceptable to the public and least likely to require changes in legislative or policy settings to be implemented. Modelling also suggests that the efficacy of any of these genetic techniques is enhanced by, and in turn non-additively enhance, conventional methods of pest fish control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ant T, Koukidou M, Rempoulakis P, Gong H-F, Economopoulos A, Vontas J, Alphey L (2012) Control of the olive fruit fly using genetics—enhanced sterile insect technique. BMC Biol 10(51). www.biomedcentral.com/1741-7007/10/51

  • Asman SM, McDonald PT, Prout T (1981) Field studies of genetic control systems for mosquitoes. Ann Rev Entomol 26:289–343

    Article  CAS  Google Scholar 

  • Bajer PG, Sorensen PW (2010) The superabundance of common carp in interconnected lakes in Midwestern North America can be attributed to the propensity of adults to reproduce in outlying habitats that experience winter hypoxia. Biol Invasions 12:1101–1112

    Article  Google Scholar 

  • Bax NJ, Thresher RE (2009) Ecological, behavioral and genetic factors influencing the recombinant control of invasive pests. Ecol Appl 19:873–888

    Article  PubMed  Google Scholar 

  • Bax NJ, Hayes K, Marshall A, Parry D, Thresher R (2002) Man-made marinas as sheltered islands for alien marine organisms: Establishment and eradication of an alien invasive marine species. In: Veitch CR, Clout MN (eds) Turning the tide: the eradication of invasive species. Auckland, invasive species specialist group of the world conservation union (IUCN) occasional paper, vol 27, pp 26–39

  • Benedict MQ, Robinson AS (2003) The first releases of transgenic mosquitoes: an argument for the sterile insect technique. Trends Parasitol 19:349–355

    Article  PubMed  Google Scholar 

  • Benfey TJ (2009) Producing sterile and single sex populations of fish for aquaculture. In: Burnell G, Allan G (eds) New technologies in aquaculture. Woodhead Publishing, Oxford, pp 143–164

    Chapter  Google Scholar 

  • Benfey TJ (2011) The physiology of triploid fish. In: Farrell AP (ed) Encyclopedia of fish physiology: from genome to environment. Academic Press, San Diego, pp 2009–2015

    Chapter  Google Scholar 

  • Bergstedt RA, McDonald RB, Twohey MB, Mullet KM, Young RJ, Heinrich JW (2003) Reduction in sea lamprey hatching success due to release of sterilized males. J Great Lakes Res 29(Suppl 1):435–444

    Article  Google Scholar 

  • Bongers ABJ, Zandieh-Doulabi B, Richter CJJ, Komen J (1999) Viable androgenetic YY genotypes of common carp (Cyprinus carpio L.). J Hered 90:195–198

    Article  Google Scholar 

  • Burt A (2003) Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc Biol Soc Lond 270:921–928

    Article  CAS  Google Scholar 

  • Chaimongkol A (2008) Disruption of Embryonic Development in Common Carp, Cyprinus carpio, and Channel Catfish, Ictalurus punctatus, via knock down of BMP2 Gene for repressible transgenic sterilisation. Ph.D. Thesis, Auburn University

  • Chen C, Huang H, Ward CM, Su JT, Schaeffer LV, Guo M, Hay BA (2007) A synthetic maternal-effect selfish genetic element drives population. Science 316:597–600

    Article  CAS  PubMed  Google Scholar 

  • Cnanni A, Lee B-Y, Zilberman N, Ozouf-Costaz C, Hulata G, Ron M, D’Hont A, Baroiller J-F, D’Cotta H, Penman DJ, Tomasino E, Coutanceau J-P, Pepey E, Shirak A, Kocher TD (2008) Genetics of sex determination in tilapine species. Sex Dev 2:43–54

    Article  Google Scholar 

  • Cotter D, O’Donovan V, O’Maoilélidigh N, Rogen G, Roche N, Wilkins NP (2000) An evaluation of the use of triploid Atlantic salmon (Salmo salar L.) in minimizing the impact of escaped farmed salmon on wild populations. Aquaculture 186:61–75

    Article  Google Scholar 

  • Cowan PE (1996) Possum biocontrol: prospects for fertility regulation. Reprod Fertil Dev 8:655–660

    Article  CAS  PubMed  Google Scholar 

  • Crane MS, Eaton BT (1997) Spring viraemia of carp virus (Rhabdovirus carpio): a biological control agent. In: Roberts J, Tilzey R (eds) Controlling carp: exploring the options for Australia. Murray-Darling Basin Comm, Canberra, pp 87–107

    Google Scholar 

  • Culver CS, Kuris AM (2000) The apparent eradication of a locally established introduced marine pest. Biol Invasions 2:245–253

    Article  Google Scholar 

  • Curtis CF (1985) Genetic control of insect pests: growth industry or lead balloon? Biol J Linn Soc 26:359–374

    Article  Google Scholar 

  • Dahlsten DL, Garcia R (1989) Eradication of exotic pests. Analysis with case histories. Yale University Press, London

    Google Scholar 

  • Dana GV, Cooper AM, Pennington KM, Sharpe LS (2013) Methodologies and special considerations for environmental risk analysis of genetically modified aquatic biocontrol organisms. Biol Invasions. doi:10.1007/s10530-012-0391-x

  • Davis S, Bax NJ, Grewe P (2001) Engineered underdominance allows efficient introgression of traits into pest populations. J Theor Biol 212:83–98

    Article  CAS  PubMed  Google Scholar 

  • de Valdez MRW, Nimmo D, Betz J, Gong HF, James AA, Alphey L, Black WC (2011) Genetic elimination of dengue vector mosquitoes. Proc Natl Acad Sci USA 108:4772–4775

    Article  Google Scholar 

  • Devlin RH, Nagahama Y (2002) Sex determination and sex differentiation in fish: an overview of genetic, physiological and environmental influences. Aquaculture 208:191–364

    Article  CAS  Google Scholar 

  • Dunham R (2011) Aqauculture and fisheries biotechnology: genetic approaches, 2nd edn. CABI, Cambridge, MA

    Book  Google Scholar 

  • Dyke VA, Hendrichs J, Robinson AS (2005) Sterile insect technique: principles and practice in area-wide integrated pest management. Springer, Dordrecht

    Google Scholar 

  • Enkrlin WR (2005) Impact of fruit fly control programmes using the sterile isect technique. In: Dyke VA, Hendrichs J, Robinson AS (eds) Sterile insect technique: principles and practice in area-wide integrated pest management. Springer, Dordrecht, pp 651–676

    Chapter  Google Scholar 

  • Enserink M (2010) GM mosquito trial alarms opponents, strains ties in Gates-funded project. Science 330:1030–1031

    Article  CAS  PubMed  Google Scholar 

  • Feldman U, Dyke VA, Mattioli RC, Jannin J (2005) Potential impact of tsetse fly control involving the sterile insect technique. In: Dyke VA, Hendrichs J, Robinson AS (eds) Sterile insect technique: principles and practice in area-wide integrated pest management. Springer, Dordrecht, pp 701–726

    Chapter  Google Scholar 

  • Fisher N, Cribb J (2005) Monitoring community attitudes to using gene technology methods (Dauughterless Carp) for managing common carp. Report to the pest animal CRC

  • Follett PA, Duan JJ (eds) (1999) Nontarget effects of biological control. Kluwer Academic Publishers, Boston, USA

    Google Scholar 

  • Foster GG, Whitten MJ (1974) The development of genetic methods of controlling the Australian sheep blowfly, Lucilia cuprina. In: Pal RM, Whitten MI (eds) The use of genetics in insect control, vol 1. Elsevier/North-Holland, Amsterdam, pp 19–43

    Google Scholar 

  • Fraser TWK, Fjelldal PG, Hansen T, Mayer I (2012) Welfare considerations of triploid fish. Rev Fish Sci 20:192–211

    Article  Google Scholar 

  • Fu G, Condon KC, Epton MJ, Gong P, Jin L, Condon GC, Morrison NI, Dafa’alla TH, Alphey L (2007) Female-specific insect lethality engineered using alternative splicing. Nat Biotechnol 25:353–357

    Article  CAS  PubMed  Google Scholar 

  • Fu G, Lees RS, Nimmo D, Aw D, Jin L, Gray P, Berendonk TU, White-Cooper H, Scaife S, Kim Phuc H, Marinotti O, Jasinakiene N, James AA, Alphey L (2010) Female-specific flightless phenotype for mosquito control. Proc Natl Acad Sci USA 107:4550–4554

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gong P, Epton MJ, Fu G, Scaife S, Hiscox A, Condon KC, Condon GC, Morrison NI, Kellym DW, Dafa’alla T, Coleman PG, Alphey L (2005) A dominant lethal genetic system for autocidal control of the Mediterranean fruitfly. Nat Biotechnol 23:453–456

    Article  CAS  PubMed  Google Scholar 

  • Gossen M, Bujard H (1992) Tight control of gene-expression in mammalian-cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA 89:5547–5551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gould F (2008) Broadening the application of evolutionarily based genetic pest management. Evolution 62:500–510

    Article  PubMed  Google Scholar 

  • Gould F, Schliekelman P (2004) Population genetics of autocidal control and strain replacement. Annu Rev Entomol 49:193–217

    Article  CAS  PubMed  Google Scholar 

  • Grewe P (1997) Potential of molecular approaches for the environmentally benign management of carp. In: Roberts J, Tilzey R (eds) Controlling carp: exploring the options for Australia. Murray-Darling Basin Comm, Canberra, pp 119–127

    Google Scholar 

  • Guo X, Wang Y, Xu Z (2009) Chromosome set manipulation in shellfish. In: Burnell G, Allan G (eds) New technologies in aquaculture. Woodhead Publishing, Oxford, pp 165–194

    Chapter  Google Scholar 

  • Gutierrez JB, Teem J (2006) A model describing the effect of sex-reversed YY fish in an established population: the use of a Trojan Y chromosome to cause extinction of an introduced exotic species. J Theor Biol 241:333–341

    Article  CAS  PubMed  Google Scholar 

  • Hamilton WD (1967) Extraordinary sex ratios. Science 156:477–488

    Article  CAS  PubMed  Google Scholar 

  • Handler AM (2002) Prospects for using genetic transformation for improved SIT and new biocontrol methods. Genetica 116:137–149

    Article  CAS  PubMed  Google Scholar 

  • Hardy CM, Hinds LA, Kerr PJ, Lloyd ML, Redford AJ, Shellam GR, Strive T (2006) Biological control of vertebrate pests using virally vectored immunocontraception. J Reprod Immunol 71:102–111

    Article  CAS  PubMed  Google Scholar 

  • Harris AF, McKenny AR, Nimmo D, Curtis Z, Black I, Morgan SA, Neira Oviedo M, Lacroix R, Naish N, Morrison NI, Collado A, Stevenson J, Scaife S, Dafaulla T, Fu G, Phillips C, Miles A, Raduan N, Kelly N, Beech C, Donnelly CA, Petrie WD, Alphey L (2012) Successful suppression of a field mosquito population by sustained release of engineered male mosquitoes. Nat Biotechnol 30:828–830

    Article  CAS  PubMed  Google Scholar 

  • Hayes KR, Leung B, Thresher R, Dambacher JM, Hosack GR (2013) Meeting the challenge of quantitative risk assessment for genetic control techniques: a framework and some methods applied to the common Carp (Cyprinus carpio) in Australia. Biol Invasions. doi:10.1007/s10530-012-0392-9

  • Heinrich JC, Scott MJ (2000) A repressible female-specific lethal genetic system for making transgenic insect strains suitable for a sterile-release program. Proc Natl Acad Sci USA 97:8229–8232

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • High B, Meyer KA (2009) Survival and dispersal of hatchery triploid rainbow trout in an Idaho river. N Am J Fish Manag 29:1797–1805

    Article  Google Scholar 

  • Hinds LA, Pech RP (1997) Immuno-contraceptive control for carp. In: Roberts J, Tilzey R (eds) Controlling carp: exploring the options for Australia. Murray-Darling Basin Comm, Canberra, pp 108–118

    Google Scholar 

  • Hinds LA, Hardy CM, Lawson MA, Singleton GR (2002) Rats, mice and people. In: Singleton GR, Hinds LA, Krebs CJ, Sprat DM (eds) Rodent biology and management. Australian Centre for International Agricultural Research, Canberra, pp 31–36

    Google Scholar 

  • Hoffmann AA, Montgomery BL, Popovici J, Iturbe-Ormaetxe I, Johnson PH, Muzzi F, Greenfield M, Durkan M, Leong YS, Dong Y, Cook H, Axford J, Callahan AG, Kenny N, Omodei C, McGraw EA, Ryan PA, Ritchie SA, Turelli M, O’Neill SL (2011) Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 476:454–457

    Article  CAS  PubMed  Google Scholar 

  • Holling CS (ed) (1978) Adaptive environmental assessment and management. Wiley, Chichester

    Google Scholar 

  • Horn C, Wimmer EA (2003) A transgene-based, embryo-specific lethality system for insect pest management. Nat Biotechnol 21:64–70

    Article  CAS  PubMed  Google Scholar 

  • Inland Fisheries Service, Tasmania (2009) Carp management program annual report 2008–09. http://www.ifs.tas.gov.au/ifs/fisherymanagement/publications/Carp%20Report%20Complete0809.pdf

  • Kallman KD (1984) A new look at sex determination in poeciliid fishes. In: Turner BJ (ed) Evolutionary genetics of fishes. Plenum, NY, pp 95–171

    Chapter  Google Scholar 

  • Klassen W, Curtis CF (2005) History of the sterile insect technique. In: Dyke VA, Hendrichs J, Robinson AS (eds) Sterile insect technique: principles and practice in area-wide integrated pest management. Springer, Dordrecht, pp 4–36

    Google Scholar 

  • Knipling EF (1960) The use of insects for their own destruction. J Econ Entomol 53:415–420

    Google Scholar 

  • Koehn J, Brumley A, Gehrke P (2000) Managing the impacts of carp. Bureau of Rural Sciences, Canberra, ACT

    Google Scholar 

  • Kozfkay JR, Dillon JC, Schill DJ (2006) Routine use of sterile fish in salmonid sport fisheries: are we there yet? Fisheries 31:392–401

    Article  Google Scholar 

  • Krafsur ES (1998) Sterile insect technique for suppressing and eradicating insect population: 55 years and counting. J Agric Entomol 15:303–317

    Google Scholar 

  • Lever C (2002) Naturalized fishes of the world. Academic Press, New York

    Google Scholar 

  • Li HW, Moyle PB (1981) Ecological analysis of species introductions into aquatic systems. Trans Am Fish Soc 110:772–782

    Article  Google Scholar 

  • Lowe S, Browne M, Boudjelas S, DePoorter M (2001) 100 of the world’s worst invasive alien species, a selection from the global invasive species database. IUCN-ISSG, Aukland

    Google Scholar 

  • Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710

    Article  Google Scholar 

  • Magori K, Gould F (2006) Genetically engineered under dominance for manipulation of pest populations: a deterministic model. Genetics 172:2613–2620

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meronek TG, Bouchard PM, Buckner ER, Burri TM, Demmerly KK, Hatleli DC, Klumb RA, Schmidt SH, Coble DW (1996) A review of fish control projects. N Am J Fish Manag 16:63–74

    Article  Google Scholar 

  • Mooney HA, Drake JA (eds) (1986) Ecology of biological invasions of North America and Hawaii. Springer, New York

    Google Scholar 

  • Muir WM, Howard RD (2004) Characterization of environmental risk of genetically engineered (GE) organisms and their potential to control exotic invasive species. Aquat Sci 66:414–420

    Article  Google Scholar 

  • Mylonas CC, Anezaki L, Divanach P, Zanuy S, Piferrer F, Ron B, Peduel A, Atia IB, Gorshkov S, Tandler A (2005) Influence of rearing temperature during the larval and nursery periods on growth and sex differentiation in two Mediterranean strains of Dicentrarchus labrax. J Fish Biol 67:652–668

    Article  Google Scholar 

  • Nanda I, Hornung U, Kondo M, Schmid M, Schartl M (2003) Common spontaneous sex-reversed XX males of the medaka Oryzias latipes. Genetics 163:245–251

    CAS  PubMed Central  PubMed  Google Scholar 

  • National Research Council of the National Academies (2004) Nonnative oysters in Chesapeake Bay. National Academies Press, Washington, DC

    Google Scholar 

  • Normand J, Le Pennec M, Boudry P (2008) Comparative histological study of gametogenesis in diploid and triploid Pacific oysters (Crassostrea gigas) reared in an estuarine farming site in France during the 2003 heatwave. Aquaculture 282:124–129

    Article  Google Scholar 

  • Norton GA (1983) Decision making in pest control. Adv Appl Biol 8:87–119

    Google Scholar 

  • Norton GA (1988) Philosophy, concepts and techniques. In: Norton GA, Pech RP (eds) Vertebrate pest management in Australia. CSIRO Publications, Canberra, pp 1–17

    Google Scholar 

  • Perkins JH (1989) Eradication: scientific and social questions. In: Dahlsten DL, Garcia R (eds) Eradication of exotic pests. Yale University Press, New Haven, pp 16–40

    Google Scholar 

  • Phuc HK, Andreasen MH, Burton RS, Vass C, Epton MJ, Pape G, Fu G, Condon KC, Scaife S, Donnelly CA, Coleman PG, White-Cooper H, Alphey L (2007) Late-acting dominant lethal genetic systems and mosquito control. BMC Biol 5:11

    Article  PubMed Central  PubMed  Google Scholar 

  • Piferrer F, Beaumont A, Falguière J-C, Flajhans M, Haffray P, Colombo L (2009) Polyploid fish and shellfish: production, biology and applications to aquaculture for performance improvement and genetic containment. Aquaculture 293:125–156

    Article  Google Scholar 

  • Pimentel D, Mcnair S, Janecka J, Wrightman J, Simmonds C, O’Connell C, Wong E (2001) Economic and environmental threats of alien plant, animal and microbe invasions. Agric Ecosyst Environ 84:1–20

    Article  Google Scholar 

  • Pimentel D, Zuniga R, Morrison D (2005) Update on environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52:273–288

    Article  Google Scholar 

  • Rayner TS, Creese RG (2006) A review of rotenone use for the control of non-indigenous fish in Australian fresh waters, and an attempted eradication of the noxious fish, Phalloceros caudimaculatus. NZ J Mar Freshw Res 40:477–486

    Article  Google Scholar 

  • Rougeot C, Prignon C, Kanfitine SY, Ngouana Kengne CV, Mélard C (2007) Sex determination in Nile tilapia, Oreochromis niloticus: effect of high temperature during embryogenesis on sex ratio and sex differentiation pathway. Aquaculture 272(Supplement 1):S306–S307

    Google Scholar 

  • Schetelig MF, Handler AM (2012) Strategy for enhanced trasgenic strain development for embryonic conditional lethality in Anastrepha suspensa. Proc Natl Acad Sci USA 109:9348–9353

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schetelig MF, Caceres C, Zacharopoulou A, Franz G, Wimmer EA (2009) Conditional embryonic lethality to improve the sterile insect technique in Ceratitis capitata (Diptera: Tephritidae). BMC Biol 7(4). doi:10.1186/1741-7007-7-4

  • Schliekelman P, Gould F (2000a) Pest control by the introduction of a conditional lethal trait on multiple loci: potential, limitations, and optimal strategies. J Econ Entomol 93:1543–1565

    Article  CAS  PubMed  Google Scholar 

  • Schliekelman P, Gould F (2000b) Pest control by the release of insects carrying a female-killing allele on multiple loci. J Econ Entomol 93:1566–1579

    Article  CAS  PubMed  Google Scholar 

  • Schliekelman P, Ellner S, Gould F (2005) Pest control by genetic manipulation of sex ratio. J Econ Entomol 98:18–34

    Article  PubMed  Google Scholar 

  • Schubert D, Lechtenberg B, Forsbach A, Gils M, Bahadur S, Schmidt R (2004) Silencing in Arabidopsis T-DNA transformants: the predominant role of a gene-specific RNA sensing mechanism versus position effects. Plant Cell 16:2561–2572

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sellars MJ, Li F, Preston NP, Xiang J (2010) Penaeid shrimp polyploidy: global status and future direction. Aquaculture 310:1–7

    Article  Google Scholar 

  • Sharpe L (in press) Public perspectives on genetic biocontrol technologies for controilling invasive fish. Biol Invasions

  • Simberloff D, Stilling P (1996) How risky is biological control? Ecology 77:1965

    Article  Google Scholar 

  • Sorensen PW, Bajer PG (2011) The common carp. In: Simberloff D, Rejmanek M (eds) Encyclopedia of invasive introduced species. University of California Press Berkeley, CA, pp 100–103

    Google Scholar 

  • Teem JL, Gutierrez JB, Parshad RD (2013) A comparison of the Trojan Y chromosome and daughterless carp eradication strategies. Biol Invasions. doi:10.1007/s10530-013-0475-2

  • Thomas DD, Donnelly CA, Wood RJ, Alphey LS (2000) Insect population control using a dominant, repressible, lethal genetic system. Science 287:2474–2476

    Article  CAS  PubMed  Google Scholar 

  • Thresher RE (2008) Autocidal technology for the control of invasive fish. Fisheries 33:114–121

    Article  Google Scholar 

  • Thresher RE, Kuris A (2004) Options for managing invasive marine species. Biol Invasions 6:295–300

    Article  Google Scholar 

  • Thresher RE, Grewe P, Patil J, Hinds L (2005) Genetic control of sex ratio in animal populations. Australian Patent 782109

  • Thresher RE, Grewe P, Whyard S, Patil J, Templeton CM, Chaimongol A, Hardy CM, Hinds LA, Dunham R (2009) Development of repressible sterility to prevent the establishment of feral populations of exotic and genetically modified animals. Aquaculture 290:104–109

    Article  Google Scholar 

  • Thresher RE, Canning M, Bax N (2013) Demographic effects on the use of genetic options for the control of mosquitofish, Gambusia holbrooki Girard. Ecol Appl. doi:10.1890/12-1324.1

  • Van Driesche RG, Bellows TS Jr (1996) Biological control. Chapman and Hall, New York

    Book  Google Scholar 

  • Vanderplank FL (1947) Experiments on the hybridization of tsetse flies and the possibility of a new method of control. Trans R Entomol Soc Lond 98:1–18

    Article  Google Scholar 

  • Veitch CR, Clout CM (eds) (2002) Turning the tide: the eradication of invasive species. IUCN SSC Invasive Species Specialist Group. IUCN, Cambridge

    Google Scholar 

  • Vitousek PM, D’Antonia CM, Loope LL, Westbrooks R (1996) Biological invasions as global environmental change. Am Sci 84:468–478

    Google Scholar 

  • Wagner EJ, Arndt RE, Routledge MD, Latremouille D, Mellenthin RF (2006) Comparison of hatchery performance, agonistic behavior, and poststocking survival between diploid and triploid rainbow trout of three different Utah strains. N Am J Aquac 68:63–73

    Article  Google Scholar 

  • Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, McMeniman CJ, Leong YS, Dong Y, Axford J, Kriesner P, Lloyd AL, Ritchie SA, O’Neill SL, Hoffmann AA (2011) The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 476:450–453

    Article  CAS  PubMed  Google Scholar 

  • Warrillow JA, Josephson DC, Youngs WD, Krueger CC (1997) Differences in sexual maturity and fall emigration between diploid and triploid brook trout (Salvelinus fontinalis) in an Adirondack lake. Canadian Journal of Fisheries and Wildlife Management 54:1808–1812

    Google Scholar 

  • Weber MJ, Hennen MJ, Brown ML (2011) Simulated population responses of common carp to commercial exploitation. N Am J Fish Manag 31:269–279

    Article  Google Scholar 

  • Whitten MJ, Foster GG (1975) Genetical methods of pest control. Annu Rev Entomol 20:461–476

    Article  CAS  PubMed  Google Scholar 

  • Windbichler N, Menichelli M, Papathanos PA, Thyme SB, Li H, Ulge UY, Hovde BT, Baker D, Monnat RJ Jr, Burt A, Crisanti A (2011) A synthetic homing endonuclease-based gene drive system in the human malaria mosquito. Nature 473:212–215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We sincerely thank Anne Kapuscinski and Leah Sharpe for organising, and the Minnesota Sea Grant Program for supporting the international symposium on which this paper is based, and the diverse participants in the symposium, whose insightful comments on the emerging technology greatly facilitated development of the ideas expressed in this paper. We also thank P. Sorenson for comments on the IPM section of the paper, as well as the extremely helpful comments of four anonymous journal refereees. Financial support was provided by 1R01AI091980-01A1 to FG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald E. Thresher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thresher, R.E., Hayes, K., Bax, N.J. et al. Genetic control of invasive fish: technological options and its role in integrated pest management. Biol Invasions 16, 1201–1216 (2014). https://doi.org/10.1007/s10530-013-0477-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-013-0477-0

Keywords

Navigation