Skip to main content
Log in

Comparison of laser diffraction and image analysis for measurement of Streptomyces coelicolor cell clumps and pellets

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Morphology is important in industrial processes involving filamentous organisms because it affects the mixing and mass transfer and can be linked to productivity. Image analysis provides detailed information about the morphology but, in practice, it is often laborious including both collection of high quality images and image processing. Laser diffraction is rapid and fully automatic and provides a volume-weighted distribution of the particle sizes. However, it is based on a number of assumptions that do not always apply to samples. We have evaluated laser diffraction to measure cell clumps and pellets of Streptomyces coelicolor compare to image analysis. Samples, taken five times during fed-batch cultivation, were analyzed by image analysis and laser diffraction. The volume-weighted size distribution was calculated for each sample. Laser diffraction and image analysis yielded similar size distributions, i.e. unimodal or bimodal distributions. Both techniques produced similar estimations of the population means, whereas the estimates of the standard deviations were generally higher using laser diffraction compared to image analysis. Therefore, laser diffraction measurements are high quality and the technique may be useful when rapid measurements of filamentous cell clumps and pellets are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bhargava S, Nandakumar M, Roy A, Wenger K, Marten M (2003) Pulsed feeding during fed-batch fungal fermentation leads to reduced viscosity without detrimentally affecting protein expression. Biotechnol Bioeng 81:341–347

    Article  PubMed  CAS  Google Scholar 

  • Casamitjana X, Serra T, Soler M, Colomer J (2002) A study of the evolution of the particle boundary layer in a reservoir, using laser particle sizing. Water Res 36:4293–4300

    Article  PubMed  CAS  Google Scholar 

  • Clarke DS (1962) Submerged citric acid fermentation of ferrocyanide treated beet molasses: morphology of pellets of Aspergillus niger. Can J Microbiol 8:133–136

    Article  Google Scholar 

  • Cox P, Thomas C (1992) Classification and measurement of fungal pellets by automated image-analysis. Biotechnol Bioeng 39:945–952

    Article  PubMed  CAS  Google Scholar 

  • Cox PW, Paul GC, Thomas CR (1998) Image analysis of the morphology of filamentous micro-organisms. Microbiology 144:817–827

    Article  PubMed  CAS  Google Scholar 

  • Grimm L, Kelly S, Hengstler J, Gobel A, Krull R, Hempel D (2004) Kinetic studies on the aggregation of Aspergillus niger conidia. Biotechnol Bioeng 87:213–218

    Article  PubMed  CAS  Google Scholar 

  • Hosobuchi M, Ogawa K, Yoshikawa H (1993) Morphology study in production of ML-236B, a precursor of pravastatin sodium, by Penicillium citrinum. J Ferment Bioeng 76:470–475. doi:10.1016/0922-338X(93)90243-2

    Article  CAS  Google Scholar 

  • ISO13320 (2009) Particle size analysis-laser diffraction methods

  • Kelly RN, Kazanjian J (2006) Commercial reference shape standards use in the study of particle shape effect on laser diffraction particle size analysis. AAPS Pharm Sci Tech 7:E126–E137

    Article  Google Scholar 

  • Kononenko AP, Kononenko KI, Mikhov DM (1969) Dependence of refractive index on physiological state of microbial population. J Appl Spectrosc 11:795–797

    Article  Google Scholar 

  • Li J (2005) Effects of Fe(III) on floc characteristics of activated sludge. J Chem Technol Biotechnol 80:313–319

    Article  Google Scholar 

  • Li Z, Shukla V, Wenger K, Fordyce A, Pedersen A, Marten M (2002) Estimation of hyphal tensile strength in production-scale Aspergillus oryzae fungal fermentations. Biotechnol Bioeng 77:601–613

    Article  PubMed  CAS  Google Scholar 

  • Li J, Li Y, Ohandja DG, Yang F, Wong FS, Chua HC (2008) Impact of filamentous bacteria on properties of activated sludge and membrane-fouling rate in a submerged MBR. Sep Purif Technol 59:238–243

    Article  CAS  Google Scholar 

  • Liao W, Liu Y, Chen S (2007) Studying pellet formation of a filamentous fungus Rhizopus oryzae to enhance organic acid production. Appl Biochem Biotech 137:689–701

    Article  Google Scholar 

  • Lin PJ, Scholz A, Krull R (2010) Effect of volumetric power input by aeration and agitation on pellet morphology and product formation of Aspergillus niger. Biochem Eng J 49:213–220

    Article  CAS  Google Scholar 

  • Liu Y, Liao W, Chen S (2008) Study of pellet formation of filamentous fungi Rhizopus oryzae using a multiple logistic regression model. Biotechnol Bioeng 99:117–128

    Article  PubMed  CAS  Google Scholar 

  • Masse A, Sperandio M, Cabassud C (2006) Comparison of sludge characteristics and performance of a submerged membrane bioreactor and an activated sludge process at high solids retention time. Water Res 40:2405–2415

    Article  PubMed  CAS  Google Scholar 

  • Matsuyama T, Yamamoto H, Scarlett B (2000) Transformation of diffraction pattern due to ellipsoids into equivalent diameter distribution for spheres. Part Part Syst Charact 17:41–46

    Article  Google Scholar 

  • Mikkelsen O (2002) Examples of spatial and temporal variations of some fine-grained suspended particle characteristics in two danish coastal water bodies. Oceanol Acta 25:39–49

    Article  CAS  Google Scholar 

  • Moreira M, Sanroman A, Feijoo G, Lema J (1996) Control of pellet morphology of filamentous fungi in fluidized bed bioreactors by means of a pulsing flow. Application to Aspergillus niger and Phanerochaete chrysosporium. Enzyme Microb Tech 19:261–266

    Article  CAS  Google Scholar 

  • Nielsen J, Johansen C, Jacobsen M, Krabben P, Villadsen J (1995) Pellet formation and fragmentation in submerged cultures of Penicillium chrysogenum and its relation to penicillin production. Biotechnol Prog 11:93–98

    Article  PubMed  CAS  Google Scholar 

  • O’Cleirigh C, Walsh P, O’Shea D (2003) Morphological quantification of pellets in Streptomyces hygroscopicus var. geldanus fermentation broths using a flatbed scanner. Biotechnol Lett 25:1677–1683

    Article  PubMed  Google Scholar 

  • Ödman P, Johansen CL, Olsson L, Gernaey KV, Lantz AE (2010) Sensor combination and chemometric variable selection for online monitoring of Streptomyces coelicolor fed-batch cultivations. Appl Microb Biotechnol 86:1745–1759

    Article  Google Scholar 

  • Pearson A, Glennon B, Kieran P (2003) Comparison of morphological characteristics of Streptomyces natalensis by image analysis and focused beam reflectance measurement. Biotechnol Prog 19:1342–1347

    Article  PubMed  CAS  Google Scholar 

  • Petersen N, Gernaey KV, Stocks S (2008) Multivariate models for prediction of rheological characteristics of filamentous fermentation broth from the size distribution. Biotechnol Bioeng 100:61–71

    Article  PubMed  CAS  Google Scholar 

  • Reichl U, King R, Gilles ED (1992) Characterization of pellet morphology during submerged growth of Streptomyces tendae by image-analysis. Biotechnol Bioeng 39:164–170

    Article  PubMed  CAS  Google Scholar 

  • Riley GL, Tucker KG, Paul GC, Thomas CR (2000) Effect of biomass concentration and mycelial morphology on fermentation broth rheology. Biotechnol Bioeng 68:160–172

    Article  PubMed  CAS  Google Scholar 

  • Rønnest NP, Stocks SM, Eliasson Lantz A, Gernaey KV (2011) Introducing process analytical technology (PAT) in filamentous cultivation process development: comparison of advanced online sensors for biomass measurement. J Ind Microbiol Biotechnol 38:1679–1690

    Article  PubMed  Google Scholar 

  • Saveyn H, Mermuys D, Thas O, van der Meeren P (2002) Determination of the refractive index of water-dispersible granules for use in laser diffraction experiments. Part Part Syst Charact 19:426–432

    Article  CAS  Google Scholar 

  • Schleheck D, Barraud N, Klebensberger J, Webb JS, McDougald D, Rice SA, Kjelleberg S (2009) Pseudomonas aeruginosa PAO1 preferentially grows as aggregates in liquid batch cultures and disperses upon starvation. PLoS One 4. doi:10.1371/journal.pone.0005513

  • Smith G, Calam CT (1980) Variations in inocula and their influence on the productivity of antibiotic fermentations. Biotechnol Lett 2:261–266

    Article  CAS  Google Scholar 

  • Suhr H, Wehnert G, Schneider K, Bittner C, Scholz T, Geissler P, Jahne B, Scheper T (1995) In situ microscopy for online characterization of cellpopulations in bioreactors, including cell-concentration measurements by depth from focus. Biotechnol Bioeng 47:106–116

    Article  PubMed  CAS  Google Scholar 

  • Thomas CR (1992) Image-analysis—putting filamentous microorganisms in the picture. Trends Biotechnol 10:343–348

    Article  PubMed  CAS  Google Scholar 

  • Treskatis S, Orgeldinger V, Wolf H, Gilles E (1997) Morphological characterization of filamentous microorganisms in submerged cultures by on-line digital image analysis and pattern recognition. Biotechnol Bioeng 53:191–201

    Article  PubMed  CAS  Google Scholar 

  • Tucker KG, Kelly T, Delgrazia P, Thomas CR (1992) Fully-automatic measurement of mycelial morphology by image analysis. Biotechnol Prog 8:353–359

    Article  CAS  Google Scholar 

  • van Wezel GP, Krabben P, Traag BA, Keijser BJF, Kerste R, Vijgenboom E, Heijnen JJ, Kraal B (2006) Unlocking Streptomyces spp. for use as sustainable industrial production platforms by morphological engineering. Appl Environ Microbiol 72:5283–5288

    Article  PubMed  Google Scholar 

  • Wu J, Wheatley A (2010) Assessing activated sludge morphology by laser and image analysis. Proc I Civ Eng-Water Manag 163:139–145

    Google Scholar 

  • Žmak PM, Podgornik A, Podgornik H, Koloini T (2006) Impact of pellet size on growth and lignin peroxidase activity of Phanerochaete chrysosporium. World J Microbiol Biotech 22:1243–1249

    Article  Google Scholar 

Download references

Acknowledgments

Peter Ödman for the in-house development of the laser diffraction method. The Ph.D. project of Nanna Petersen Rønnest is supported by a grant from the Innovative Bioprocess Technology Research Consortium financed by the Danish Research Council for Technology and Production Sciences, Chr. Hansen A/S, Danisco A/S and Novozymes A/S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krist V. Gernaey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rønnest, N.P., Stocks, S.M., Lantz, A.E. et al. Comparison of laser diffraction and image analysis for measurement of Streptomyces coelicolor cell clumps and pellets. Biotechnol Lett 34, 1465–1473 (2012). https://doi.org/10.1007/s10529-012-0936-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-012-0936-1

Keywords

Navigation