Skip to main content
Log in

Simultaneous degradation of phytic acid and starch by an industrial strain of Saccharomyces cerevisiae producing phytase and α-amylase

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Phytase liberates inorganic phosphate from phytic acid (myo-inositol hexakisphosphate) which is the major phosphate reserve in plant-derived foods and feeds. An industrial strain of Saccharomyces cerevisiae expressing the Debaryomyces castellii phytase gene (phytDc) and D. occidentalis α-amylase gene (AMY) was developed. The phytDc and AMY genes were constitutively expressed under the ADC1 promoter in S. cerevisiae by using the δ-integration system, which contains DNA derived exclusively from yeast. The recombinant industrial strain secreted both phytase and α-amylase for the efficient degradation of phytic acid and starch as main components of plant seeds. This new strain hydrolyzed 90% of 0.5% (w/v) sodium phytate within 5 days of growth and utilized 100% of 2% (w/v) starch within 48 h simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Cho KM, Yoo YJ, Kang HS (1999) δ-Integration of endo/exo-glucanase and β-glucosidase genes into the yeast chromosomes for direct conversion of cellulose to ethanol. Enzyme Microb Technol 25:23–30

    Article  CAS  Google Scholar 

  • Choi JM, Kim DS, Yang MS, Kim HR, Kim JH (2001) Expression of the Aspergillus niger var. awamori phytase gene in Pichia pastoris, and comparison of biological properties. J Microbiol Biotechnol 11:1066–1070

    CAS  Google Scholar 

  • Ghang DM, Yu L, Lim MH, Ko HM, Im SY, Lee HB, Bai S (2007) Efficient one-step starch utilization by industrial strains of Saccharomyces cerevisiae expressing the glucoamylase and α-amylase genes from Debaryomyces occidentalis. Biotechnol Lett 29:1203–1208

    Article  PubMed  CAS  Google Scholar 

  • Gietz D, St. Jean A, Woods R, Schiestl RH (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20:1425

    Article  PubMed  CAS  Google Scholar 

  • Han Y, Wilson DB, Lei XG (1999) Expression of an Aspergillus niger phytase gene (phyA) in Saccharomyces cerevisiae. Appl Environ Microbiol 65:1915–1918

    PubMed  CAS  Google Scholar 

  • Latta M, Eskin M (1980) A simple and rapid colorimetric method for phytate determination. J Agric Food Chem 28:1313–1315

    Article  CAS  Google Scholar 

  • Lee FWF, Da Silva NA (1997) Improved efficiency and stability of multiple cloned gene insertions at the δ sequences of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 48:339–345

    Article  PubMed  CAS  Google Scholar 

  • Lei XG, Han Y (1999) Role of glycosylation in the functional expression of an Aspergillus niger phytase (phyA) in Pichia pastoris. Arch Biochem Biophys 364:83–90

    Article  PubMed  Google Scholar 

  • Marin D, Jimenez A, Lobato MF (2001) Construction of an efficient amylolytic industrial yeast strain containing DNA exclusively derived from yeast. FEMS Microbiol Lett 201:249–253

    Article  PubMed  CAS  Google Scholar 

  • Mayer AF, Hellmuth K, Schlieker H, Lopez-Ulibarri R, Oertel S, Dahlems U, Strasser AW, van Loon AP (1999) An expression system matures: A highly efficient and cost-effective process for phytase production by recombinant strains of Hansenula polymorpha. Biotechnology 63:373–381

    CAS  Google Scholar 

  • Nakamura Y, Fukuhara H, Sano K (2000) Secreted phytase activities of yeasts. Biosci Biotechnol Biochem 64:841–844

    Article  PubMed  CAS  Google Scholar 

  • Nieto A, Prieto JA, Sanz P (1999) Stable high-copy number integration of Aspergillus orizae α-amylase cDNA in an industrial baker’s yeast strain. Biotechnol Prog 15:459–466

    Article  PubMed  CAS  Google Scholar 

  • Ragon M, Aumelas A, Chemardin P, Galvez S, Moulin G, Boze H (2008a) Complete hydrolysis of myo-inositol hexakisphosphate by a novel phytase from Debaryomyces castellii CBS 2923. Appl Microbiol Biotechnol 78:47–53

    Article  PubMed  CAS  Google Scholar 

  • Ragon M, Neugnot-Roux V, Chemardin P, Moulin G, Boze H (2008b) Molecular gene cloning and overexpression of the phatase from Debaryomyces castellii CBS 2923. Protein Exp Purif 58:275–283

    Article  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, NY

    Google Scholar 

  • Sano K, Fukuhara H, Nakamura Y (1999) Phytase of the yeast Arxula adeninivorans. Biotechnol Lett 21:33–38

    Article  CAS  Google Scholar 

  • Segueilha L, Lambrechts C, Boze H, Moulin G, Galzy P (1992) Purification and properties of the phytase from Schwanniomyces castellii. J Ferm Bioeng 74:7–11

    Article  CAS  Google Scholar 

  • Wodzinski RJ, Ullah AHJ (1996) Phytase. Adv Appl Microbiol 42:263–302

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Mi-Hyeon Lim and Ok-Hee Lee were supported by the second stage of the Brain Korea 21 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suk Bai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, MH., Lee, OH., Chin, JE. et al. Simultaneous degradation of phytic acid and starch by an industrial strain of Saccharomyces cerevisiae producing phytase and α-amylase. Biotechnol Lett 30, 2125–2130 (2008). https://doi.org/10.1007/s10529-008-9799-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-008-9799-x

Keywords

Navigation