Skip to main content
Log in

Protein biosensors based on the principle of fluorescence resonance energy transfer for monitoring cellular dynamics

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Genetically-coded, fluorescence resonance energy transfer (FRET) biosensors are widely used to study molecular events from single cells to whole organisms. They are unique among biosensors because of their spontaneous fluorescence and targeting specificity to both organelles and tissues. In this review, we discuss the theoretical basis of FRET with a focus on key parameters responsible for designing FRET biosensors that have the highest sensitivity. Next, we discuss recent applications that are grouped into four common biosensor design patterns—intermolecular FRET, intramolecular FRET, FRET from substrate cleavage and FRET using multiple colour fluorescent proteins. Lastly, we discuss recent progress in creating fluorescent proteins suitable for FRET purposes. Together these advances in the development of FRET biosensors are beginning to unravel the interconnected and intricate signalling processes as they are occurring in living cells and organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Azpiazu I, Gautam N (2004) A fluorescence resonance energy transfer-based sensor indicates that receptor access to a G protein is unrestricted in a living mammalian cell. J Biol Chem 279(26):27709–27718

    Article  PubMed  CAS  Google Scholar 

  • Bevis BJ, Glick BS (2002) Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed). Nat Biotechnol 20(1):83–87

    Article  PubMed  CAS  Google Scholar 

  • Braun DC, Garfield SH, Blumberg PM (2005) Analysis by fluorescence resonance energy transfer of the interaction between ligands and protein kinase Cdelta in the intact cell. J Biol Chem 280(9):8164–8171

    Article  PubMed  CAS  Google Scholar 

  • Camuzeaux B, Spriet C, Heliot L, Coll J, Duterque-Coquillaud M (2005) Imaging Erg and Jun transcription factor interaction in living cells using fluorescence resonance energy transfer analyses. Biochem Biophys Res Commun 332(4):1107–1114

    Article  PubMed  CAS  Google Scholar 

  • Chiang JJ, Truong K (2005) Using co-cultures expressing fluorescence resonance energy transfer based protein biosensors to simultaneously image caspase-3 and Ca2+ signaling. Biotechnol Lett 27(16):1219–1227

    Article  PubMed  CAS  Google Scholar 

  • De S, Macara IG, Lannigan DA (2005) Novel biosensors for the detection of estrogen receptor ligands. J Steroid Biochem Mol Biol 96(3–4):235–244

    Article  PubMed  CAS  Google Scholar 

  • Diegelmann S, Fiala A, Leibold C, Spall T, Buchner E (2002) Transgenic flies expressing the fluorescence calcium sensor Cameleon 2.1 under UAS control. Genesis 34(1–2):95–98

    Article  PubMed  CAS  Google Scholar 

  • Endoh T, Funabashi H, Mie M, Kobatake E (2005) Method for detection of specific nucleic acids by recombinant protein with fluorescent resonance energy transfer. Anal Chem 77(14):4308–4314

    Article  PubMed  CAS  Google Scholar 

  • Fehr M, Frommer WB, Lalonde S (2002) Visualization of maltose uptake in living yeast cells by fluorescent nanosensors. Proc Natl Acad Sci USA 99(15):9846–9851

    Article  PubMed  CAS  Google Scholar 

  • Fehr M, Lalonde S, Ehrhardt DW, Frommer WB (2004) Live imaging of glucose homeostasis in nuclei of COS-7 cells. J Fluoresc 14(5):603–609

    Article  PubMed  CAS  Google Scholar 

  • Fehr M, Lalonde S, Lager I, Wolff MW, Frommer WB (2003) In vivo imaging of the dynamics of glucose uptake in the cytosol of COS-7 cells by fluorescent nanosensors. J Biol Chem 278(21):19127–19133

    Article  PubMed  CAS  Google Scholar 

  • Fiala A, Spall T (2003) In vivo calcium imaging of brain activity in Drosophila by transgenic cameleon expression. Sci STKE 2003(174):PL6

    PubMed  Google Scholar 

  • Fiala A, Spall T, Diegelmann S, Eisermann B, Sachse S, Devaud JM, Buchner E, Galizia CG (2002) Genetically expressed cameleon in Drosophila melanogaster is used to visualize olfactory information in projection neurons. Curr Biol 12(21):1877–1884

    Article  PubMed  CAS  Google Scholar 

  • Galperin E, Verkhusha VV, Sorkin A (2004) Three-chromophore FRET microscopy to analyze multiprotein interactions in living cells. Nat Meth 1(3):209–217

    Article  CAS  Google Scholar 

  • Griesbeck O, Baird GS, Campbell RE, Zacharias DA, Tsien RY (2001) Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J Biol Chem 276(31):29188–29194

    Article  PubMed  CAS  Google Scholar 

  • Hara M, Bindokas V, Lopez JP, Kaihara K, Landa LR Jr, Harbeck M, Roe MW (2004) Imaging endoplasmic reticulum calcium with a fluorescent biosensor in transgenic mice. Am J Physiol Cell Physiol 287(4):C932–C938

    Article  PubMed  CAS  Google Scholar 

  • He L, Wu X, Simone J, Hewgill D, Lipsky PE (2005) Determination of tumor necrosis factor receptor-associated factor trimerization in living cells by CFP→YFP→mRFP FRET detected by flow cytometry. Nucleic Acids Res 33(6):e61

    Article  PubMed  Google Scholar 

  • Higashijima S, Masino MA, Mandel G, Fetcho JR (2003) Imaging neuronal activity during zebrafish behavior with a genetically encoded calcium indicator. J Neurophysiol 90(6):3986–3997

    Article  PubMed  Google Scholar 

  • Itoh RE, Kurokawa K, Ohba Y, Yoshizaki H, Mochizuki N, Matsuda M (2002) Activation of rac and cdc42 video imaged by fluorescent resonance energy transfer-based single-molecule probes in the membrane of living cells. Mol Cell Biol 22(18):6582–6591

    Article  PubMed  CAS  Google Scholar 

  • Jones J, Heim R, Hare E, Stack J, Pollok BA (2000) Development and application of a GFP-FRET intracellular caspase assay for drug screening. J Biomol Screen 5(5):307–318

    Article  PubMed  CAS  Google Scholar 

  • Karasawa S, Araki T, Nagai T, Mizuno H, Miyawaki A (2004) Cyan-emitting and orange-emitting fluorescent proteins as a donor/acceptor pair for fluorescence resonance energy transfer. Biochem J 381(Pt 1):307–312

    PubMed  CAS  Google Scholar 

  • Kerr R, Lev-Ram V, Baird G, Vincent P, Tsien RY, Schafer WR (2000) Optical imaging of calcium transients in neurons and pharyngeal muscle of C. elegans. Neuron 26(3):583–594

    Article  PubMed  CAS  Google Scholar 

  • Kramer JM, Yi L, Shen F, Maitra A, Jiao X, Jin T, Gaffen SL (2006) Evidence for ligand-independent multimerization of the IL-17 receptor. J Immunol 176(2):711–715

    PubMed  CAS  Google Scholar 

  • Lissandron V, Terrin A, Collini M, D’Alfonso L, Chirico G, Pantano S, Zaccolo M (2005) Improvement of a FRET-based indicator for cAMP by linker design and stabilization of donor-acceptor interaction. J Mol Biol 354(3):546–555

    Article  PubMed  CAS  Google Scholar 

  • Luo KQ, Yu VC, Pu Y, Chang DC (2003) Measuring dynamics of caspase-8 activation in a single living HeLa cell during TNFalpha-induced apoptosis. Biochem Biophys Res Commun 304(2):217–222

    Article  PubMed  CAS  Google Scholar 

  • Mank M, Reiff DF, Heim N, Friedrich MW, Borst A, Griesbeck O (2006) A FRET-based calcium biosensor with fast signal kinetics and high fluorescence change. Biophys J 90(5):1790–1796

    Article  PubMed  CAS  Google Scholar 

  • Mitra RD, Silva CM, Youvan DC (1996) Fluorescence resonance energy transfer between blue-emitting and red-shifted excitation derivatives of the green fluorescent protein. Gene 173(1 Spec No):13–17

    Article  PubMed  CAS  Google Scholar 

  • Miyawaki A, Griesbeck O, Heim R, Tsien RY (1999) Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc Natl Acad Sci USA 96(5):2135–2140

    Article  PubMed  CAS  Google Scholar 

  • Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388(6645):882–887

    Article  PubMed  CAS  Google Scholar 

  • Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20(1):87–90

    Article  PubMed  CAS  Google Scholar 

  • Nagai T, Miyawaki A (2004) A high-throughput method for development of FRET-based indicators for proteolysis. Biochem Biophys Res Commun 319(1):72–77

    Article  PubMed  CAS  Google Scholar 

  • Nagai T, Yamada S, Tominaga T, Ichikawa M, Miyawaki A (2004) Expanded dynamic range of fluorescent indicators for Ca(2+) by circularly permuted yellow fluorescent proteins. Proc Natl Acad Sci USA 101(29):10554–10559

    Article  PubMed  CAS  Google Scholar 

  • Nguyen AW, Daugherty PS (2005) Evolutionary optimization of fluorescent proteins for intracellular FRET. Nat Biotechnol 23(3):355–360

    Article  PubMed  CAS  Google Scholar 

  • Nikolaev VO, Gambaryan S, Lohse MJ (2006) Fluorescent sensors for rapid monitoring of intracellular cGMP. Nat Meth 3(1):23–25

    Article  CAS  Google Scholar 

  • Nyqvist D, Mattsson G, Kohler M, Lev-Ram V, Andersson A, Carlsson PO, Nordin A, Berggren PO, Jansson L (2005) Pancreatic islet function in a transgenic mouse expressing fluorescent protein. J Endocrinol 186(2):333–341

    Article  PubMed  CAS  Google Scholar 

  • Okumoto S, Looger LL, Micheva KD, Reimer RJ, Smith SJ, Frommer WB (2005) Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors. Proc Natl Acad Sci USA 102(24):8740–8745

    Article  PubMed  CAS  Google Scholar 

  • Onuki R, Nagasaki A, Kawasaki H, Baba T, Uyeda TQ, Taira K (2002) Confirmation by FRET in individual living cells of the absence of significant amyloid beta -mediated caspase 8 activation. Proc Natl Acad Sci USA 99(23):14716–14721

    Article  PubMed  CAS  Google Scholar 

  • Osibow K, Malli R, Kostner GM, Graier WF (2006) A new type of non-Ca2+-buffering Apo(a)-based fluorescent indicator for intraluminal Ca2+ in the endoplasmic reticulum. J Biol Chem 281(8):5017–5025

    Article  PubMed  CAS  Google Scholar 

  • Pedelacq JD, Cabantous S, Tran T, Terwilliger TC, Waldo GS (2006) Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol 24(1):79–88

    Article  PubMed  CAS  Google Scholar 

  • Remus TP, Zima AV, Bossuyt J, Bare DJ, Martin JL, Blatter LA, Bers DM, Mignery GA (2006) Biosensors to measure inositol 1,4,5-trisphosphate concentration in living cells with spatiotemporal resolution. J Biol Chem 281(1):608–616

    Article  PubMed  CAS  Google Scholar 

  • Rizzo MA, Springer GH, Granada B, Piston DW (2004) An improved cyan fluorescent protein variant useful for FRET. Nat Biotechnol 22(4):445–449

    Article  PubMed  CAS  Google Scholar 

  • Rudolf R, Mongillo M, Magalhaes PJ, Pozzan T (2004) In vivo monitoring of Ca(2+) uptake into mitochondria of mouse skeletal muscle during contraction. J Cell Biol 166(4):527–536

    Article  PubMed  CAS  Google Scholar 

  • Sakai R, Repunte-Canonigo V, Raj CD, Knopfel T (2001) Design and characterization of a DNA-encoded, voltage-sensitive fluorescent protein. Eur J Neurosci 13(12):2314–2318

    Article  PubMed  CAS  Google Scholar 

  • Sato M, Ozawa T, Inukai K, Asano T, Umezawa Y (2002) Fluorescent indicators for imaging protein phosphorylation in single living cells. Nat Biotechnol 20(3):287–294

    Article  PubMed  CAS  Google Scholar 

  • Sato M, Umezawa Y (2004) Imaging protein phosphorylation by fluorescence in single living cells. Methods 32(4):451–455

    Article  PubMed  CAS  Google Scholar 

  • Schleifenbaum A, Stier G, Gasch A, Sattler M, Schultz C (2004) Genetically encoded FRET probe for PKC activity based on pleckstrin. J Am Chem Soc 126(38):11786–11787

    Article  PubMed  CAS  Google Scholar 

  • Seth A, Otomo T, Yin HL, Rosen MK (2003) Rational design of genetically encoded fluorescence resonance energy transfer-based sensors of cellular Cdc42 signaling. Biochemistry 42(14):3997–4008

    Article  PubMed  CAS  Google Scholar 

  • Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22(12):1567–1572

    Article  PubMed  CAS  Google Scholar 

  • Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Meth 2(12):905–909

    Article  CAS  Google Scholar 

  • Steinmeyer R, Noskov A, Krasel C, Weber I, Dees C, Harms GS (2005) Improved fluorescent proteins for single-molecule research in molecular tracking and co-localization. J Fluoresc 15(5):707–721

    Article  PubMed  CAS  Google Scholar 

  • Stockholm D, Bartoli M, Sillon G, Bourg N, Davoust J, Richard I (2005) Imaging calpain protease activity by multiphoton FRET in living mice. J Mol Biol 346(1):215–222

    Article  PubMed  CAS  Google Scholar 

  • Tanimura A, Nezu A, Morita T, Turner RJ, Tojyo Y (2004) Fluorescent biosensor for quantitative real-time measurements of inositol 1,4,5-trisphosphate in single living cells. J Biol Chem 279(37):38095–38098

    Article  PubMed  CAS  Google Scholar 

  • Ting AY, Kain KH, Klemke RL, Tsien RY (2001) Genetically encoded fluorescent reporters of protein tyrosine kinase activities in living cells. Proc Natl Acad Sci USA 98(26):15003–15008

    Article  PubMed  CAS  Google Scholar 

  • Truong K, Sawano A, Mizuno H, Hama H, Tong KI, Mal TK, Miyawaki A, Ikura M (2001) FRET-based in vivo Ca2+ imaging by a new calmodulin-GFP fusion molecule. Nat Struct Biol 8(12):1069–1073

    Article  PubMed  CAS  Google Scholar 

  • Tsujino N, Yamanaka A, Ichiki K, Muraki Y, Kilduff TS, Yagami K, Takahashi S, Goto K, Sakurai T (2005) Cholecystokinin activates orexin/hypocretin neurons through the cholecystokinin A receptor. J Neurosci 25(32):7459–7469

    Article  PubMed  CAS  Google Scholar 

  • Valeur B (2002). Molecular fluorescence: principles and applications. Wiley-VCH, Weinheim

    Google Scholar 

  • Wang Y, Botvinick EL, Zhao Y, Berns MW, Usami S, Tsien RY, Chien S (2005) Visualizing the mechanical activation of Src. Nature 434(7036):1040–1045

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Gerard AL, Huang BC, Anderson DC, Payan DG, Luo Y (1998) Detection of programmed cell death using fluorescence energy transfer. Nucleic Acids Res 26(8):2034–2035

    Article  PubMed  CAS  Google Scholar 

  • Yamada A, Hirose K, Hashimoto A, Iino M (2005) Real-time imaging of myosin II regulatory light-chain phosphorylation using a new protein biosensor. Biochem J 385(Pt 2):589–594

    PubMed  CAS  Google Scholar 

  • Yang X, Xu P, Xu T (2005) A new pair for inter- and intra-molecular FRET measurement. Biochem Biophys Res Commun 330(3):914–920

    Article  PubMed  CAS  Google Scholar 

  • Ye K, Schultz JS (2003) Genetic engineering of an allosterically based glucose indicator protein for continuous glucose monitoring by fluorescence resonance energy transfer. Anal Chem 75(14):3451–3459

    Article  PubMed  CAS  Google Scholar 

  • Zaccolo M, Cesetti T, Di Benedetto G, Mongillo M, Lissandron V, Terrin A, Zamparo I (2005) Imaging the cAMP-dependent signal transduction pathway. Biochem Soc Trans 33(Pt 6):1323–1326

    PubMed  CAS  Google Scholar 

  • Zaccolo M, Magalhaes P, Pozzan T (2002) Compartmentalisation of cAMP and Ca(2+) signals. Curr Opin Cell Biol 14(2):160–166

    Article  PubMed  CAS  Google Scholar 

  • Zaccolo M, Pozzan T (2002) Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science 295(5560):1711–1715

    Article  PubMed  CAS  Google Scholar 

  • Zapata-Hommer O, Griesbeck O (2003) Efficiently folding and circularly permuted variants of the Sapphire mutant of GFP. BMC Biotechnol 3:5

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Canadian Foundation of Innovation (CFI) and the National Science and Engineering Research Council (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Truong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, I.T., Pham, E. & Truong, K. Protein biosensors based on the principle of fluorescence resonance energy transfer for monitoring cellular dynamics. Biotechnol Lett 28, 1971–1982 (2006). https://doi.org/10.1007/s10529-006-9193-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-006-9193-5

Keywords

Navigation