Skip to main content
Log in

Immobilized yeast cell systems for continuous fermentation applications

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

In several yeast-related industries, continuous fermentation systems offer important economical advantages in comparison with traditional systems. Fermentation rates are significantly improved, especially when continuous fermentation is combined with cell immobilization techniques to increase the yeast concentration in the fermentor. Hence the technique holds a great promise for the efficient production of fermented beverages, such as beer, wine and cider as well as bio-ethanol. However, there are some important pitfalls, and few industrial-scale continuous systems have been implemented. Here, we first review the various cell immobilization techniques and reactor setups. Then, the impact of immobilization on cell physiology and fermentation performance is discussed. In a last part, we focus on the practical use of continuous fermentation and cell immobilization systems for beer production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bardi EP, Koutinas AA, Kanellaki M (1997) Room and low temperature brewing with yeast immobilized on gluten pellets. Proc Biochem 32:691–696

    Article  CAS  Google Scholar 

  • Baron GV, Willaert RG (2004) Cell immobilization in preformed porous matrices. In: Nedovic V, Willaert R (eds) Fundamentals of cell immobilisation biotechnology. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 229–244

    Google Scholar 

  • Baron GV, Willaert RG, De Backer L (1996) Immobilised cell reactors. In: Willaert RG, Baron GV, De Backer L (eds) Immobilised living cell systems: modelling and experimental methods. John Wiley & Sons, Chichester, England, pp. 67–95

    Google Scholar 

  • Bony M, Thines-Sempoux D, Barre P, Blondin B (1997) Localization and cell surface anchoring of the Saccharomyces cerevisiae flocculation protein Flo1p. J Bacteriol 179:4929–4936

    Google Scholar 

  • Boulton C, Quain D (2001) Brewing yeast and fermentation. Blackwell Science Ltd, Oxford

    Google Scholar 

  • Brányik T, Vicente A, Cruz JMM, Teixeira JA (2004a) Continuous primary fermentation of beer with yeast immobilized on spent grains – the effect of operational conditions. J Am Soc Brew Chem 62:29–34

    Google Scholar 

  • Brányik T, Vicente A, Oliveira R, Teixeira JA (2004b) Physicochemical surface properties of brewing yeast influencing their immobilization onto spent grains in a continuous reactor. Biotechnol Bioeng 88:84–93

    Article  CAS  Google Scholar 

  • Coutts MW (1966) The many facets of continuous fermentation. In: Proceedings of the 9th Convention of the Institute of Brewing. Australië & New Zealand Section, Auckland, pp 1–7

  • Decamps C, Norton S, Poncelet D, Neufeld RJ (2004) Continuous pilot plant-scale immobilization of yeast in (-carrageenan gel beads. AIChE J 50:1599–1605

    Article  CAS  Google Scholar 

  • Domingues L, Vicente AA, Lima N, Teixeira JA (2000) Applications of yeast flocculation in biotechnological processes. Biotechnol Bioprocess Eng 5:288–305

    Article  CAS  Google Scholar 

  • Doran PM, Bailey JE (1986) Effects of immobilization on growth, fermentation properties, and molecular composition of Saccharomyces cerevisiae attached to gelatin. Biotechnol Bioeng 28:73–87

    Article  PubMed  CAS  Google Scholar 

  • Dunbar J, Campbell SI, Banks DJ, Warren DR (1988) Metabolic aspects of a commercial continuous fermentation system. In: Proceedings of the 20th Convention of the Institute of Brewing, 8th–13th May, Brisbane, pp 151–158

  • Galazzo JL, Bailey JE (1990) Fermentation pathway kinetics and metabolic flux control in suspended and immobilized Saccharomyces cerevisiae. Enzyme Microb Technol 12:162–172

    Article  CAS  Google Scholar 

  • Higgins VJ, Beckhouse AG, Oliver AD, Rogers P, Dawes IW (2003) Yeast genome-wide expression analysis identifies a strong ergosterol and oxidative stress response during the initial stages of an industrial lager fermentation. Appl Environ Microbiol 69:4777–4787

    Article  PubMed  CAS  Google Scholar 

  • Hilge-Rotmann B, Rehm H-J (1990) Relationship between fermentation capability and fatty acid composition of free and immobilized Saccharomyces cerevisiae. Appl Microbiol Biotechnol 34:502–508

    Google Scholar 

  • Inloes DS, Taylor DP, Cohen SN, Michaels AS, Robertson CR (1983) Ethanol production by Saccharomyces cerevisiae immobilized in hollow-fiber membrane bioreactors. Appl Environ Microbiol 46:264–278

    PubMed  CAS  Google Scholar 

  • Inoue T (1995) Development of a two-stage immobilized yeast fermentation system for continuous beer brewing. In: Proceedings of the 25th European Brewery Convention. IRL Press, Oxford, Brussels, pp 25–36, ISBN  0-19-963614-1

  • Jin Y-L, Speers AR (1998) Flocculation of Saccharomyces cerevisiae. Food Res Int 31:421–440

    Article  CAS  Google Scholar 

  • Jirku V, Masak J, Cejkova A (2000) Yeast cell attachment: a tool modulating wall composition and resistance to 5-bromo-6-azauracil. Enzyme Microb Technol 26:808–811

    Article  CAS  Google Scholar 

  • Jirku V, Masak J, Cejkova A (2003) The potential of functional changes in attached biomass. Adv Environ Res 7:635–639

    Article  Google Scholar 

  • Junter G-A, Coquet L, Vilain S, Jouenne T (2002) Immobilized-cell physiology: current data and the potentialities of proteomics. Enzyme Microb Technol 31:201–212

    Article  CAS  Google Scholar 

  • Karel SF, Libicki SB, Robertson CR (1985) The immobilization of whole cells: Engineering principles. Chem Eng Sci 40:1321–1354

    Article  CAS  Google Scholar 

  • Kargupta K, Datta S, Sanyal SK (1998) Analysis of the performance of a continuous membrane bioreactor with cell recycling during ethanol fermentation. Biochem Eng J 1:31–37

    Article  CAS  Google Scholar 

  • Kobayashi O, Hayashi N, Kuroki R, Sone H (1998) Region of Flo1 proteins responsible for sugar recognition. J Bacteriol 180:6503–6510

    PubMed  CAS  Google Scholar 

  • Lebeau T, Jouenne T, Junter G-A (1998) Diffusion of sugars and alcohols through composite membrane structures immobilizing viable yeast cells. Enzyme Microb Technol 22:434–438

    Article  CAS  Google Scholar 

  • Linko M, Haikara A, Ritala A, Penttilä M (1998) Recent advances in the malting and brewing industry. J Biotechnol 65:85–98

    Article  CAS  Google Scholar 

  • Linko M, Virkajärvi I, Pohjala N, Lindborg K, Kronlöf J, Pajunen E (1997) Main fermentation with immobilized yeast – a breakthrough? In: Proceedings of the 26th European Brewery Convention. IRL Press, Oxford, Maastricht, pp 385–394. ISBN  0-19-963690-7

  • Masschelein CA (1994) State-of-the-art and future developments in fermentation. J Am Soc Brew Chem 52:28–35

    CAS  Google Scholar 

  • Mensour N, Margaritis A, Briens CL, Pilkington H, Russell I (1997) New developments in the brewing industry using immobilised yeast cell bioreactor systems. J Inst Brew 103:363–370

    CAS  Google Scholar 

  • Mistler M, Breitenbücher K (1995) Continuous fermentation of beer with yeast immobilized on porous glass carriers. Brewers’ Digest July:48–51

  • Mulder M (1996) Basic principles of membrane technology, 2nd edn. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Narziss L (1997) Global brewing technology – a look over the fence. Brauwelt Int 1:16–21

    Google Scholar 

  • Narziss L, Hellich P (1971) Ein Beitrag zur wesentlichen Beschleunigung der Gärung und Reifung des Bieres. Brauwelt 111:1491–1500

    CAS  Google Scholar 

  • Nedovic VA, Cukalovic IL, Bezbradica D, Obradovic B, Bugarski B (2005a) New porous matrices and procedures for yeast cell immobilisation for primary beer fermentation. In: Proceedings of the 30th European Brewery Convention. Prague, pp 401–413, ISBN  90-70143-23-2

  • Nedovic VA, Willaert R, Leskosek-Cukalovic I, Obradovic B, Bugarski B (2005b) Beer production using immobilised cells. In: Nedovic V, Willaert R (eds) Applications of cell immobilisation biotechnology. Springer, Dordrecht, The Netherlands, pp 259–273

    Chapter  Google Scholar 

  • Nitzsche F, Höhn G, Meyer-Pittroff R, Berger S, Pommersheim R (2001) A new way for immobilized yeast systems: secondary fermentation without heat treatment. In: Proceedings of the 28th European Brewery Convention. Budapest, pp 486–494, ISBN 90-70143-21-6

  • Norton S, D’Amore T (1994) Physiological effects of yeast immobilization: applications for brewing. Enzyme Microb Technol 16:365–375

    Article  CAS  Google Scholar 

  • Norton S, Watson K, D’Amore T (1995) Ethanol tolerance of immobilized brewer’s yeast cells. Appl Microbiol Biotechnol 43:18–24

    Article  PubMed  CAS  Google Scholar 

  • Obradovic B, Nedovic VA, Bugarski B, Willaert RG, Vunjak-Novakovic G (2004) Immobilised cell bioreactors. In: Nedovic V, Willaert R (eds) Fundamentals of cell immobilisation biotechnology. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 411–436

    Google Scholar 

  • O’Brien DJ, Craig JCJ (1996) Ethanol production in a continuous fermentation/membrane pervaporation system. Appl Microbiol Biotechnol 44:699–704

    Article  CAS  Google Scholar 

  • O’Brien DJ, Roth LH, McAloon AJ (2000) Ethanol production by continuous fermentation–pervaporation: a preliminary economic analysis. J Membr Sci 166:105–111

    Article  CAS  Google Scholar 

  • Oliveira R (1997) Understanding adhesion: a means for preventing fouling. Exp Therm Fluid Sci 14:316–322

    Article  CAS  Google Scholar 

  • Ramakrishna SV, Prakasham RS (1999) Microbial fermentations with immobilized cells. Curr Sci 77:87–100

    CAS  Google Scholar 

  • Sampermans S, Mortier J, Soares EV (2005) Flocculation onset in Saccharomyces cerevisiae: the role of nutrients. J Appl Microbiol 98:525–531

    Article  PubMed  CAS  Google Scholar 

  • Scott JA, O’Reilly AM (1995) Use of a flexible sponge matrix to immobilize yeast for beer fermentation. J Am Soc Brew Chem 53:67–71

    CAS  Google Scholar 

  • Shen H-Y, De Schrijver S, Moonjai N, Verstrepen KJ, Delvaux F, Delvaux FR (2004) Effects of CO2 on the formation of flavour volatiles during fermentation with immobilised brewer’s yeast. Appl Microbiol Biotechnol 64:636–643

    Article  PubMed  CAS  Google Scholar 

  • Shen H-Y, Moonjai N, Verstrepen KJ, Delvaux F, Delvaux FR (2003a) Immobilization of Saccharomyces cerevisiae induces changes in the gene expression levels of HSP12, SSA3 and ATF1 during beer fermentation. J Am Soc Brew Chem 61:175–181

    CAS  Google Scholar 

  • Shen H-Y, Moonjai N, Verstrepen KJ, Delvaux FR (2003b) Impact of attachment immobilization on yeast physiology and fermentation performance. J Am Soc Brew Chem 61:79–87

    CAS  Google Scholar 

  • Smogrovicová D, Dömény Z (1999) Beer volatile by-product formation at different fermentation temperature using immobilised yeasts. Process Biochem 34:785–794

    Article  Google Scholar 

  • Smogrovicová D, Dömény Z, Navrátil M, Dvorák P (2001) Continuous beer fermentation using polyvinyl alcohol entrapped yeast. In: Proceedings of the 28th European Brewery Convention. Budapest, pp 540–548, ISBN 90-70143-21-6

  • Stoughton RB (2005) Applications of DNA microarrays in biology. Annu Rev Biochem 74:53–82

    Article  PubMed  CAS  Google Scholar 

  • Tapani K, Soininen-Tengvall P, Berg H, Ranta B, Pajunen E (2003) Continuous primary fermentation of beer with immobilised yeast. In: Smart KA (ed) Brewing yeast fermentation performance, 2nd edn. Blackwell Science, Oxford, pp 293–301

    Google Scholar 

  • Tata M, Bower P, Bromberg S, Duncombe D, Fehring J, Lau V, Ryder D, Stassi P (1999) Immobilized yeast bioreactor systems for continuous beer fermentation. Biotechnol Prog 15:105–113

    Article  PubMed  CAS  Google Scholar 

  • van Dieren B (1995) Yeast metabolism and the production of alcohol-free beer. In: EBC Symposium “Immobilized Yeast Applications in the Brewery Industry”, Monograph XXIV, Oct 1995, Espoo, Finland: Verlag Hans Carl Getränke-Fachverlag, pp 66–76, ISBN 3-418-00749-X

  • van Iersel MFM, Meersman E, Arntz M, Rombouts FM, Abee T (1998) Effect of environmental conditions on flocculation and immobilization of brewer’s yeast during production of alcohol-free beer. J Inst Brew 104:131–136

    Google Scholar 

  • van Iersel MFM, van Dieren B, Rombouts FM, Abee T (1999) Flavor formation and cell physiology during the production of alcohol-free beer with immobilized Saccharomyces cerevisiae. Enzyme Microb Technol 24:407–411

    Article  Google Scholar 

  • Verstrepen KJ, Derdelinckx G, Verachtert H, Delvaux FR (2003) Yeast flocculation: what brewers should know. Appl Microbiol Biotechnol 61:197–205

    PubMed  CAS  Google Scholar 

  • Verstrepen KJ, Iserentant D, Malcorps P, Derdelinckx G, Van Dijck P, Winderickx J, Pretorius IS, Thevelein JM, Delvaux FR (2004) Glucose and sucrose: hazardous fast-food for industrial yeast? Trends Biotechnol 22:531–537

    Article  PubMed  CAS  Google Scholar 

  • Verstrepen KJ, Klis FM (2006) Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol 60:5–15

    Article  PubMed  CAS  Google Scholar 

  • Verstrepen KJ, Pretorius IS (2006) The development of superior yeast strains for the food and beverage industry: challenges, opportunities and potential benefits. In: Querol A, Fleet G (eds) The yeast handbook, volume 8: yeasts in food and beverages. Springer-Verlag, Heidelberg, Germany, pp 399–444

    Chapter  Google Scholar 

  • Virkajärvi I (2001) Feasibility of continuous main fermentation of beer using immobilized yeast. PhD thesis, Helsinki University of Technology, Espoo

  • Virkajärvi I (2002) Some developments in immobilized fermentation of beer during the last 3 0 years. Brauwelt Int 20:100–105

    Google Scholar 

  • Virkajärvi I, Lindborg K, Kronlöf J, Pajunen E (1999) Effects of aeration on flavor compounds in immobilized primary fermentation. Mon Schr Brauwiss 52:9–12, 25–28

    Google Scholar 

  • Wainwright T (1973) Diacetyl – a review. J Inst Brew 79:451–470

    CAS  Google Scholar 

  • Willaert RG (2006) Cell immobilisation and its applications in biotechnology: current trends and future prospects. In: El-Mansi EMT, Bryce CFA (eds) Fermentation microbiology and biotechnology, 2nd edn. Taylor and Francis (in press)

  • Willaert RG, De Backer L, Baron GV (1996) Mass transfer in immobilised cell systems. In: Willaert RG, Baron GV, De Backer L (eds) Immobilised living cell systems: modelling and experimental methods. John Wiley & Sons, Chichester, England, pp 21–45

    Google Scholar 

  • Xu TJ, Zhao XQ, Bai FW (2005) Continuous ethanol production using self-flocculating yeast in a cascade of fermentors. Enzyme Microb Technol 37:634–640

    Article  CAS  Google Scholar 

Download references

Acknowledgements

P.J. Verbelen acknowledges the financial support from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). K.J. Verstrepen is a postdoctoral fellow of the Fund for Scientific Research-Flanders (FWO-Vlaanderen) and a CGR fellow of Harvard University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pieter J. Verbelen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verbelen, P.J., De Schutter, D.P., Delvaux, F. et al. Immobilized yeast cell systems for continuous fermentation applications. Biotechnol Lett 28, 1515–1525 (2006). https://doi.org/10.1007/s10529-006-9132-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-006-9132-5

Keywords

Navigation