Skip to main content
Log in

Domain engineering of Saccharomyces cerevisiae exoglucanases

  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

To illustrate the effect of a cellulose-binding domain (CBD) on the enzymatic characteristics of non-cellulolytic exoglucanases, 10 different recombinant enzymes were constructed combining the Saccharomyces cerevisiae exoglucanases, EXG1 and SSG1, with the CBD2 from the Trichoderma reesei cellobiohydrolase, CBH2, and a linker peptide. The enzymatic activity of the recombinant enzymes increased with the CBD copy number. The recombinant enzymes, CBD2-CBD2-L-EXG1 and CBD2-CBD2-SSG1, exhibited the highest cellobiohydrolase activity (17.5 and 16.3 U mg −1 respectively) on Avicel cellulose, which is approximately 1.5- to 2-fold higher than the native enzymes. The molecular organisation of CBD in these recombinant enzymes enhanced substrate affinity, molecular flexibility and synergistic activity, contributing to their elevated action on the recalcitrant substrates as characterised by adsorption, kinetics, thermostability and scanning electron microscopic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • GW Black JE Rixon JH Clarke GP Hazlewood LM Ferreira DN Bolam HJ Gilbert (1997) ArticleTitleCellulose binding domains and linker sequences potentiate the activity of hemicellulases against complex substrates J. Biotechnol. 57 59–69

    Google Scholar 

  • C Boisset C Fraschini M Schulein B Henrissat H Chanzy (2000) ArticleTitleImaging the enzymatic digestion of bacterial cellulose ribbons reveals the endo character of the cellobiohydrolase Cel6A from Humicola insolens and its mode of synergy with cellobiohydrolase Cel7A Appl. Environ. Microbiol 66 1444–1452

    Google Scholar 

  • C Boisset C Pétrequin H Chanzy B Henrissat M Schülein (2001) ArticleTitleOptimized mixtures of recombinant Humicola insolenscellulases for the biodegradation of crystalline cellulose Biotechnol. Bioeng 72 339–345

    Google Scholar 

  • L Gal S Pages C Gaudin A Belaich C Reverbel-Leroy C Tardif JP Belaich (1997) ArticleTitleCharacterization of the cellulolytic complex (cellulosome) produced by Clostridium cellulolyticum.Appl Environ. Microbiol. 63 903–909

    Google Scholar 

  • IA Kataeva DL Blum XL Li LG Ljungdahl (2001) ArticleTitleDo domain interactions of glycosyl hydrolases from Clostridium thermocellum contribute to protein thermostability? Protein. Eng. 14 167–172

    Google Scholar 

  • G Larriba E Andaluz R Cueva RD Basco (1995) ArticleTitleMolecular biology of yeast exoglucanases FEMS Microbiol. Lett. 125 121–126

    Google Scholar 

  • J Lehtio J Sugiyama M Gustavsson L Fransson M Linder TT Teeri (2003) ArticleTitleThe binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules Proc. Natl. Acad. Sci. USA 100 484–489

    Google Scholar 

  • M Linder TT Teeri (1997) ArticleTitleThe roles and function of cellulose-binding domains J. Bacteriol 57 15–28

    Google Scholar 

  • M Linder I Salovuori L Ruohonen TT Teeri (1996) ArticleTitleCharacterization of a double cellulose-binding domain Synergistic high affinity binding to crystalline cellulose. J. Biol. Chem. 271 21268–21272

    Google Scholar 

  • A Lönn M Gardonyi ZW van HB Hahn R Cordero Otero (2002) ArticleTitleCold adaptation of xylose isomerase from Thermus thermophilus through random PCR mutagenesis Gene cloning and protein characterization. Eur. J. Biochem. 269 IssueID(1 157–163

    Google Scholar 

  • LR Lynd PJ Weimer WH Van Zyl IS Pretorius (2002) ArticleTitleMicrobial cellulose utilization: fundamentals and biotechnology Microbiol. Mol. Biol. Rev. 66 506–577

    Google Scholar 

  • DF Malherbe M Du Toit RR Cordero Otero P Van Rensburg IS Pretorius (2003) ArticleTitleExpression of the Aspergillus niger glucose oxidase gene (GOX1) in Saccharomyces cerevisiae and its potential applications in wine production Appl. Microbiol. Biotechnol. 61 502–511

    Google Scholar 

  • M Srisodsuk T Reinikainen M Penttilä TT Teeri (1993) ArticleTitleRole of the interdomain linker peptide of Trichoderma reesei cellobiohydrolase I in its interaction with crystalline cellulose J. Biol. Chem. 268 20756–20761

    Google Scholar 

  • K Suzuki T Yabe Y Maruyama K Abe T Nakajima (2001) ArticleTitleCharacterization of recombinant yeast exo-β-1,3-glucanase (Exg1p) expressed in Escherichia coli cells Biosci. Biotechnol. Biochem. 65 1310–1314

    Google Scholar 

  • P Tomme DP Driver EA Amandoron RC Miller SuffixJr. R Antony J Warren DG Kilburn (1995) ArticleTitleComparison of a fungal (family I) and bacterial (family II) cellulose-binding domain. J. Bacteriol 177 4356–4364

    Google Scholar 

  • P Van Rensburg WH Zyl Particlevan IS Pretorius (1997) ArticleTitleOver-expression of the Saccharomyces cerevisiae exo-β-1,3-glucanase gene together with the Bacillus subtilis endo-β-1,3 –1,4-glucanase gene and the Butyrivibrio fibrisolvensendo-β-1,4-glucanase gene in yeast J. Biotechnol 55 43–53

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Pretorius.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moses, S.B.G., Otero, R.R.C. & Pretorius, I.S. Domain engineering of Saccharomyces cerevisiae exoglucanases. Biotechnol Lett 27, 355–362 (2005). https://doi.org/10.1007/s10529-005-1014-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-005-1014-8

Keywords

Navigation