Skip to main content
Log in

Bone marrow stromal cells from aged male rats have delayed mineralization and reduced response to mechanical stimulation through nitric oxide and ERK1/2 signaling during osteogenic differentiation

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Bone marrow stromal cells (MSCs) are a source of osteoblast precursors that can be recruited during bone remodeling or injury, both important processes in aging populations. With advancing age, alterations in bone structure and mineralization are often associated with an increase in osteoporosis and fracture risk. Changes in the number of osteoprogenitor cells and their osteogenic potential may occur with advancing age; however few studies have considered the influence of mechanical conditions. Here, we investigated the ability of bone MSCs from mature and aged rats to differentiate into osteoblasts and to respond to short and long periods of mechanical stimulation through signaling by ERK1/2, nitric oxide (NO), and prostaglandin E2 (PGE2) during differentiation. Mineralization was delayed and reduced, but extracellular matrix production appeared less affected by increased age. Differentiating MSCs from aged animals had a decreased response to short and long periods of mechanical stimulation through ERK1/2 signaling, and to long periods of mechanical loading through NO signaling early and late during differentiation. Increases in relative PGE2 signaling were higher in MSCs from aged animals, which could compensate for reduced ERK1/2 and NO signaling. The decreased mineralization may decrease the ability of cells from aged animals to respond to mechanical stimulation through ERK1/2 and NO signaling, with increased impairment over differentiation time. Decreasing the delay in mineralization of MSCs from aging animals might improve their ability to respond to mechanical stimulation during bone remodeling and injury, suggesting therapies for bone fragility diseases and tissue engineering treatments in elderly populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bakker AD, Klein-Nulend J, Tanck E, Heyligers IC, Albers GH, Lips P et al (2006) Different responsiveness to mechanical stress of bone cells from osteoporotic versus osteoarthritic donors. Osteoporos Int 17(6):827–833

    Article  PubMed  CAS  Google Scholar 

  • Ben-Porath I, Weinberg RA (2005) The signals and pathways activating cellular senescence. Int J Biochem Cell Biol 37(5):961–976

    Article  PubMed  CAS  Google Scholar 

  • Bergman RJ, Gazit D, Kahn AJ, Gruber H, McDougall S, Hahn TJ (1996) Age-related changes in osteogenic stem cells in mice. J Bone Miner Res 11(5):568–577

    Article  PubMed  CAS  Google Scholar 

  • Brockbank KG, Ploemacher RE, van Peer CM (1983) An in vitro analysis of murine hemopoietic fibroblastoid progenitors and fibroblastoid cell function during aging. Mech Ageing Dev 22(1):11–21

    Article  PubMed  CAS  Google Scholar 

  • Cao JJ, Wronski TJ, Iwaniec U, Phleger L, Kurimoto P, Boudignon B et al (2005) Aging increases stromal/osteoblastic cell-induced osteoclastogenesis and alters the osteoclast precursor pool in the mouse. J Bone Miner Res 20(9):1659–1668

    Article  PubMed  CAS  Google Scholar 

  • Ciarelli TE, Fyhrie DP, Schaffler MB, Goldstein SA (2000) Variations in three-dimensional cancellous bone architecture of the proximal femur in female hip fractures and in controls. J Bone Miner Res 15(1):32–40

    Article  PubMed  CAS  Google Scholar 

  • Cole JH, van der Meulen MC (2011) Whole bone mechanics and bone quality. Clin Orthop Relat Res 469(8):2139–2149. PMCID: 3126947

    Google Scholar 

  • Cowin SC, Weinbaum S, Zeng Y (1995) A case for bone canaliculi as the anatomical site of strain generated potentials. J Biomech 28(11):1281–1297

    Article  PubMed  CAS  Google Scholar 

  • Ding DC, Shyu WC, Lin SZ (2011) Mesenchymal stem cells. Cell Transplant 20(1):5–14

    Article  PubMed  Google Scholar 

  • Donahue SW, Jacobs CR, Donahue HJ (2001) Flow-induced calcium oscillations in rat osteoblasts are age, loading frequency, and shear stress dependent. Am J Physiol Cell Physiol 281(5):C1635–C1641

    PubMed  CAS  Google Scholar 

  • Egrise D, Martin D, Vienne A, Neve P, Schoutens A (1992) The number of fibroblastic colonies formed from bone marrow is decreased and the in vitro proliferation rate of trabecular bone cells increased in aged rats. Bone 13(5):355–361

    Article  PubMed  CAS  Google Scholar 

  • Eriksen EF, Mosekilde L, Melsen F (1985) Trabecular bone resorption depth decreases with age: differences between normal males and females. Bone 6(3):141–146

    Article  PubMed  CAS  Google Scholar 

  • Fedarko NS, Vetter UK, Weinstein S, Robey PG (1992) Age-related changes in hyaluronan, proteoglycan, collagen, and osteonectin synthesis by human bone cells. J Cell Physiol 151(2):215–227

    Article  PubMed  CAS  Google Scholar 

  • Fong EL, Chan CK, Goodman SB (2011) Stem cell homing in musculoskeletal injury. Biomaterials. 32(2):395–409. PMCID: 2991369

    Google Scholar 

  • Frangos JA, Eskin SG, McIntire LV, Ives CL (1985) Flow effects on prostacyclin production by cultured human endothelial cells. Science 227(4693):1477–1479

    Article  PubMed  CAS  Google Scholar 

  • Hui SL, Slemenda CW, Johnston CC, Jr (1988) Age and bone mass as predictors of fracture in a prospective study. J Clin Invest 81(6):1804–1809. PMCID: 442628

    Google Scholar 

  • Justesen J, Stenderup K, Eriksen EF, Kassem M (2002) Maintenance of osteoblastic and adipocytic differentiation potential with age and osteoporosis in human marrow stromal cell cultures. Calcif Tissue Int 71(1):36–44

    Article  PubMed  CAS  Google Scholar 

  • Kajkenova O, Lecka-Czernik B, Gubrij I, Hauser SP, Takahashi K, Parfitt AM et al (1997) Increased adipogenesis and myelopoiesis in the bone marrow of SAMP6, a murine model of defective osteoblastogenesis and low turnover osteopenia. J Bone Miner Res 12(11):1772–1779

    Article  PubMed  CAS  Google Scholar 

  • Kassem M, Marie PJ (2011) Senescence-associated intrinsic mechanisms of osteoblast dysfunctions. Aging Cell 10(2):191–197

    Article  PubMed  CAS  Google Scholar 

  • Katsara O, Mahaira LG, Iliopoulou EG, Moustaki A, Antsaklis A, Loutradis D et al (2011) Effects of donor age, gender, and in vitro cellular aging on the phenotypic, functional, and molecular characteristics of mouse bone marrow-derived mesenchymal stem cells. Stem Cells Dev 20(9):1549–1561

    Article  PubMed  CAS  Google Scholar 

  • Katzburg S, Lieberherr M, Ornoy A, Klein BY, Hendel D, Somjen D (1999) Isolation and hormonal responsiveness of primary cultures of human bone-derived cells: gender and age differences. Bone 25(6):667–673

    Article  PubMed  CAS  Google Scholar 

  • Kostenuik PJ, Halloran BP, Morey-Holton ER, Bikle DD (1997) Skeletal unloading inhibits the in vitro proliferation and differentiation of rat osteoprogenitor cells. Am J Physiol 273(6 Pt 1):E1133–E1139

    PubMed  CAS  Google Scholar 

  • Kretlow JD, Jin YQ, Liu W, Zhang WJ, Hong TH, Zhou G, et al (2008) Donor age and cell passage affects differentiation potential of murine bone marrow-derived stem cells. BMC Cell Biol 9:60. PMCID: 2584028

    Google Scholar 

  • Kufahl RH, Saha S (1990) A theoretical model for stress-generated fluid flow in the canaliculi-lacunae network in bone tissue. J Biomech 23(2):171–180

    Article  PubMed  CAS  Google Scholar 

  • Liedert A, Kaspar D, Augat P, Ignatius A, Claes L (2005) Mechanobiology of bone tissue and bone cells. In: Kamkin A, Kiseleva I (eds) Mechanosensitivity of the heart. Springer, Dordrecht

    Google Scholar 

  • Livak KaS TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408

    Article  Google Scholar 

  • Majumdar S, Genant HK, Grampp S, Newitt DC, Truong VH, Lin JC et al (1997) Correlation of trabecular bone structure with age, bone mineral density, and osteoporotic status: in vivo studies in the distal radius using high resolution magnetic resonance imaging. J Bone Miner Res 12(1):111–118

    Article  PubMed  CAS  Google Scholar 

  • Marie PJ, Sabbagh A, de Vernejoul MC, Lomri A (1989) Osteocalcin and deoxyribonucleic acid synthesis in vitro and histomorphometric indices of bone formation in postmenopausal osteoporosis. J Clin Endocrinol Metab 69(2):272–279

    Article  PubMed  CAS  Google Scholar 

  • Matsubara T, Kida K, Yamaguchi A, Hata K, Ichida F, Meguro H, Aburatani H, Nishimura R, Yondeda T (2008) BMP2 regulates osterix through Msx2 and Runx2 during osteoblast differentiation. J Biol Chem 283(43):29119–29125

    Article  PubMed  CAS  Google Scholar 

  • McCalden RW, McGeough JA, Court-Brown CM (1997) Age-related changes in the compressive strength of cancellous bone. The relative importance of changes in density and trabecular architecture. J Bone Joint Surg Am 79(3):421–427

    PubMed  CAS  Google Scholar 

  • Moerman EJ, Teng K, Lipschitz DA, Lecka-Czernik B (2004) Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-gamma2 transcription factor and TGF-beta/BMP signaling pathways. Aging Cell 3(6):379–89. PMCID: 1850101

    Google Scholar 

  • Mosekilde L (1986) Normal vertebral body size and compressive strength: relations to age and to vertebral and iliac trabecular bone compressive strength. Bone 7(3):207–212

    Article  PubMed  CAS  Google Scholar 

  • Muschler GF, Nitto H, Boehm CA, Easley KA (2001) Age- and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors. J Orthop Res 19(1):117–125

    Article  PubMed  CAS  Google Scholar 

  • Nishida S, Endo N, Yamagiwa H, Tanizawa T, Takahashi HE (1999) Number of osteoprogenitor cells in human bone marrow markedly decreases after skeletal maturation. J Bone Miner Metab 17(3):171–177

    Article  PubMed  CAS  Google Scholar 

  • Orwig DL, Chiles N, Jones M, Hochberg MC (2011) Osteoporosis in men: update 2011. Rheum Dis Clin North Am 37(3):401–414

    Article  PubMed  Google Scholar 

  • Owan I, Burr DB, Turner CH, Qiu J, Tu Y, Onyia JE et al (1997) Mechanotransduction in bone: osteoblasts are more responsive to fluid forces than mechanical strain. Am J Physiol 273(3 Pt 1):C810–C815

    PubMed  CAS  Google Scholar 

  • Oxlund H, Mosekilde L, Ortoft G (1996) Reduced concentration of collagen reducible cross links in human trabecular bone with respect to age and osteoporosis. Bone 19(5):479–484

    Article  PubMed  CAS  Google Scholar 

  • Paschalis EP, Betts F, DiCarlo E, Mendelsohn R, Boskey AL (1997) FTIR microspectroscopic analysis of human iliac crest biopsies from untreated osteoporotic bone. Calcif Tissue Int 61(6):487–492

    Article  PubMed  CAS  Google Scholar 

  • Piekarski K, Munro M (1977) Transport mechanism operating between blood supply and osteocytes in long bones. Nature 269(5623):80–82

    Article  PubMed  CAS  Google Scholar 

  • Price C, Zhou X, Li W, Wang L (2011) Real-time measurement of solute transport within the lacunar-canalicular system of mechanically loaded bone: direct evidence for load-induced fluid flow. J Bone Miner Res 26(2):277–285

    Article  PubMed  CAS  Google Scholar 

  • Quarto R, Thomas D, Liang CT (1995) Bone progenitor cell deficits and the age-associated decline in bone repair capacity. Calcif Tissue Int 56(2):123–129

    Article  PubMed  CAS  Google Scholar 

  • Quiroz FG, Posada OM, Gallego-Perez D, Higuita-Castro N, Sarassa C, Hansford DJ, et al (2010) Housekeeping gene stability influences the quantification of osteogenic markers during stem cell differentiation to the osteogenic lineage. Cytotechnology 62(2):109–120. PMCID: 2873986

    Google Scholar 

  • Rachner TD, Khosla S, Hofbauer LC (2011) Osteoporosis: now and the future. Lancet 377(9773):1276–1287

    Article  PubMed  CAS  Google Scholar 

  • Raggatt LJ, Partridge NC (2010) Cellular and molecular mechanisms of bone remodeling. J Biol Chem 285(33):25103–25108. PMCID: 2919071

    Google Scholar 

  • Robling AG, Castillo AB, Turner CH (2006) Biomechanical and molecular regulation of bone remodeling. Annu Rev Biomed Eng 8:455–498

    Article  PubMed  CAS  Google Scholar 

  • Ross PD, Davis JW, Vogel JM, Wasnich RD (1990) A critical review of bone mass and the risk of fractures in osteoporosis. Calcif Tissue Int 46(3):149–161

    Article  PubMed  CAS  Google Scholar 

  • Ross PD, Davis JW, Epstein RS, Wasnich RD (1991) Pre-existing fractures and bone mass predict vertebral fracture incidence in women. Ann Intern Med 114(11):919–923

    PubMed  CAS  Google Scholar 

  • Schraufstatter IU, Discipio RG, Khaldoyanidi S (2011) Mesenchymal stem cells and their microenvironment. Front Biosci 17:2271–2288

    Article  Google Scholar 

  • Schuit SC, van der Klift M, Weel AE, de Laet CE, Burger H, Seeman E et al (2004) Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone 34(1):195–202

    Article  PubMed  CAS  Google Scholar 

  • Sethe S, Scutt A, Stolzing A (2006) Aging of mesenchymal stem cells. Ageing Res Rev 5(1):91–116

    Article  PubMed  CAS  Google Scholar 

  • Smalt R, Mitchell FT, Howard RL, Chambers TJ (1997) Mechanotransduction in bone cells: induction of nitric oxide and prostaglandin synthesis by fluid shear stress, but not by mechanical strain. Adv Exp Med Biol 433:311–314

    PubMed  CAS  Google Scholar 

  • Stenderup K, Justesen J, Eriksen EF, Rattan SI, Kassem M (2001) Number and proliferative capacity of osteogenic stem cells are maintained during aging and in patients with osteoporosis. J Bone Miner Res 16(6):1120–1129

    Article  PubMed  CAS  Google Scholar 

  • Stenderup K, Justesen J, Clausen C, Kassem M (2003) Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 33(6):919–926

    Article  PubMed  Google Scholar 

  • Stolzing A, Scutt A (2006) Age-related impairment of mesenchymal progenitor cell function. Aging Cell 5(3):213–224

    Article  PubMed  CAS  Google Scholar 

  • Strube P, Mehta M, Baerenwaldt A, Trippens J, Wilson CJ, Ode A et al (2009) Sex-specific compromised bone healing in female rats might be associated with a decrease in mesenchymal stem cell quantity. Bone 45(6):1065–1072

    Article  PubMed  CAS  Google Scholar 

  • Swan CC, Lakes RS, Brand RA, Stewart KJ (2003) Micromechanically based poroelastic modeling of fluid flow in Haversian bone. J Biomech Eng 125(1):25–37

    Article  PubMed  CAS  Google Scholar 

  • Tullberg-Reinert H, Jundt G (1999) In situ measurement of collagen synthesis by human bone cells with a sirius red-based colorimetric microassay: effects of transforming growth factor beta2 and ascorbic acid 2-phosphate. Histochem Cell Biol 112(4):271–276

    Article  PubMed  CAS  Google Scholar 

  • Urist MR (1997) Bone morphogenetic protein: the molecularization of skeletal system development. J Bone Miner Res 12(3):343–346

    Article  PubMed  CAS  Google Scholar 

  • Weinbaum S, Cowin SC, Zeng Y (1994) A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J Biomech 27(3):339–360

    Article  PubMed  CAS  Google Scholar 

  • Wilson A, Shehadeh LA, Yu H, Webster KA (2010) Age-related molecular genetic changes of murine bone marrow mesenchymal stem cells. BMC Genomics 11:229. PMCID: 2873471

    Google Scholar 

  • Xiao G, Jiang D, Thomas P, Benson MD, Guan K, Karsenty G et al (2000) MAPK pathways activate and phosphorylate the osteoblast-specific transcription factor, Cbfa1. J Biol Chem 275(6):4453–4459

    Article  PubMed  CAS  Google Scholar 

  • Xu CX, Hendry JH, Testa NG, Allen TD (1983) Stromal colonies from mouse marrow: characterization of cell types, optimization of plating efficiency and its effect on radiosensitivity. J Cell Sci 61:453–466

    PubMed  CAS  Google Scholar 

  • Zhang W, Ou G, Hamrick M, Hill W, Borke J, Wenger K, et al (2008) Age-related changes in the osteogenic differentiation potential of mouse bone marrow stromal cells. J Bone Miner Res 23(7):1118–1128. PMCID: 2679384

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank to XiXi Wang, Sharon Reske, Kathy Sweet, and Bonnie Nolan for animal care and Dennis Kayner and Charles Roehm with their assistance with the oscillatory fluid shear system. This work was supported by NSF Graduate Student Research Fellowship (DMJ) and NIH Grant RO1 AR51504 (SAG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danese M. Joiner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 899 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joiner, D.M., Tayim, R.J., Kadado, A. et al. Bone marrow stromal cells from aged male rats have delayed mineralization and reduced response to mechanical stimulation through nitric oxide and ERK1/2 signaling during osteogenic differentiation. Biogerontology 13, 467–478 (2012). https://doi.org/10.1007/s10522-012-9391-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-012-9391-6

Keywords

Navigation