Skip to main content

Advertisement

Log in

Mechanism of attenuation of pro-inflammatory Ang II-induced NF-κB activation by genistein in the kidneys of male rats during aging

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Angiotensin II (Ang II), a main effector of the renin-angiotensin system, is recognized as a pro-inflammatory mediator on age-related vascular inflammation. Ang II is one of the most important oxidative stress inducer, activates the redox-sensitive transcription factor, nuclear factor-κB (NF-κB) during aging. Genistein, a major component found in isoflavone, has anti-inflammatory activities that are often associated with its anti-oxidative activity. The purpose of this study is to document molecular mechanism of altered Ang II-related NF-κB activation during aging and inhibitory molecular events by genistein regarding to age-related Ang II-induced NF-κB activation. At present, we utilized young (6 months old), old (24 months old), and genistein-treated (2 and 4 mg/kg/day for 10 days) old rats. For our current study, we choose to use the kidney and rat endothelial cell line, YPEN-1 because of its vulnerability to age-related oxidative stress and inflammatory responsiveness. The results of the analysis showed that Ang II and AT1 expression increased during aging and that these increases were blunted by treatment with genistein. Furthermore, we investigated the inhibitory effects of genistein on the Ang II-induced redox imbalance in aged rat kidneys. Genistein reduced age-related increases in NF-κB activity and NF-κB-dependent pro-inflammatory genes expression. We also determined genistein attenuated Ang II-induced NF-κB activation through its anti-oxidant activity in YPEN-1 cells. Taken together, our present results show that genistein has potent anti-inflammatory effect resulting in the attenuation of the Ang II-induced NF-κB activation during aging. The most significant new finding from this study is that genistein exerts its anti-Ang II action during aging by suppressive effect of NF-κB activation. Based on these data, genistein may be an anti-Ang II agent that may be used in anti-inflammatory therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alhasan SA, Ensley JF, Sarkar FH (2000) Genistein induced molecular changes in a squamous cell carcinoma of the head and neck cell line. Int J Oncol 16:333–338

    PubMed  CAS  Google Scholar 

  • Anderson S, Meyer TW, Rennke HG, Brenner BM (1996) Control of glomerular a hypertension limits glomerular injury in rats with reduced renal mass. J Clin Invest 76:612–619

    Article  Google Scholar 

  • Basso N, Paglia N, Stella I, de Cavanagh EM, Ferder L, Arnaiz M, Inserra F (2005) Protective effect of the inhibition of the renin-angiotensin system on aging. Regul Pept 128:247–252

    Article  PubMed  CAS  Google Scholar 

  • Benigni A, Corna D, Zoja C, Sonzogni A, Latini R, Salio M, Conti S, Rottoli D, Longaretti L, Cassis P, Morigi M, Coffman T, Remuzzi G (2009) Disruption of the Ang II type 1 receptor promotes longevity in mice. J Clin Invest 119:524–530

    Article  PubMed  CAS  Google Scholar 

  • Benigni A, Cassis P, Remuzzi G (2010) Angiotensin II revisited: new roles in inflammation, immunology and aging. EMBO 2:247–257

    CAS  Google Scholar 

  • Carey RM (2007) Angiotensin receptors and aging. Hypertension 50:33–34

    Article  PubMed  Google Scholar 

  • Cassis P, Conti S, Remuzzi G, Benigni A (2010) Angiotensin receptors as determinants of life span. Pflugers Archiv Eur J Physiol 459:325–332

    Article  CAS  Google Scholar 

  • Chai W, Danser A (2005) Is angiotensin II made inside or outside of the cell? Curr Hypertens Rep 7:124–127

    Article  PubMed  CAS  Google Scholar 

  • Cheng ZJ, Vapaatalo H, Mervaala E (2005) Angiotensin II and vascular inflammation. Med Sci Monit 11:194–205

    Google Scholar 

  • Chung HY, Kim HJ, Kim KW, Choi JS, Yu BP (2002) Molecular inflammation hypothesis of aging based on the anti-aging mechanism of calorie restriction. Microsc Res Tech 59:264–272

    Article  PubMed  CAS  Google Scholar 

  • Chung HY, Sung B, Jung KJ, Zou Y, Yu BP (2006) The molecular inflammatory process in aging. Antioxid Redox Signal 8:572–581

    Article  PubMed  CAS  Google Scholar 

  • Chung HY, Cesari M, Anton S, Marzetti E, Giovannini S, Seo AY, Carter C, Yu BP, Leeuwenburgh C (2009) Molecular inflammation: underpinnings of aging and age-related diseases. Ageing Res Rev 8:18–30

    Article  PubMed  CAS  Google Scholar 

  • da Silva Lemos M, Nardoni Gonçalves Braga A, Roberto da Silva J, Augusto Souza Dos Santos R (2005) Altered cardiovascular responses to chronic angiotensin II infusion in aged rats. Regul Pept 132:67–73

    Article  PubMed  Google Scholar 

  • Davis JN, Kucuk O, Sarkar FH (1999) Genistein inhibits NF-kappa B activation in prostate cancer cells. Nutr Cancer 35:167–174

    Article  PubMed  CAS  Google Scholar 

  • Diz D (2008) Lewis K. Dahl memorial lecture: the renin-angiotensin system and aging. Hypertension 52:37–43

    Article  PubMed  CAS  Google Scholar 

  • Farzamirad V, Aluko RE (2008) Angiotensin-converting enzyme inhibition and free-radical scavenging properties of cationic peptides derived from soybean protein hydrolysates. Int J Food Sci Nutr 59:428–437

    Article  PubMed  CAS  Google Scholar 

  • Griendling KK, Minieri CA, Ollerenshaw ZD, Alexander RW (1994) Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 74:1141–1148

    PubMed  CAS  Google Scholar 

  • Harman D (1973) Free radical theory of aging. Triangle 12:153–158

    PubMed  CAS  Google Scholar 

  • Hoffmann A, Levchenko A, Scott ML, Baltimore D (2002) The IκB NF-κB signaling module: temporal control and selective gene activation. Science 298:1241–1245

    Article  PubMed  CAS  Google Scholar 

  • Inserra F, Basso N, Ferder M, Userpater M, Stella I, Paglia N, Inserra P, Tenembaum D, Ferder L (2009) Changes seen in the aging kidney and the effect of blocking the renin-angiotensin system. Ther Adv Cardiovasc Dis 3:341–346

    Article  PubMed  Google Scholar 

  • Ito N, Ohishi M, Yamamoto K, Tatara Y, Shiota A, Hayashi N, Komai N, Yanagitani Y, Rakugi H, Ogihara T (2007) Renin-angiotensin inhibition reverses advanced cardiac remodeling in aging spontaneously hypertensive rats. Am J Hypertens 20:792–799

    Article  PubMed  CAS  Google Scholar 

  • Kang YM, Ma Y, Elks C, Zheng JP, Yang ZM, Francis J (2008) Cross-talk between cytokines and renin-angiotensin in hypothalamic paraventricular nucleus in heart failure: role of nuclear factor-kappaB. Cardiovasc Res 79:671–678

    Article  PubMed  CAS  Google Scholar 

  • Kim HJ, Jung KJ, Yu BP, Cho CG, Choi JS, Chung HY (2002) Modulation of redox-sensitive transcription factors by calorie restriction during aging. Mech Ageing Dev 123:1589–1595

    Article  PubMed  CAS  Google Scholar 

  • Kim JM, Lee EK, Kim DH, Yu BP, Chung HY (2010) Kaempferol modulates pro-inflammatory NF-kappaB activation by suppressing advanced glycation end products-induced NADPH oxidase. Age 32:197–208

    Article  PubMed  CAS  Google Scholar 

  • Kim JM, Heo HS, Ha YM, Ye BH, Lee EK, Choi YJ, Yu BP, Chung HY (2011) Mechanism of Ang II involvement in activation of NF-κB through phosphorylation of p65 during aging. Age. doi:10.1007/s11357-011-9207-7

  • Kuba M, Tanaka K, Tawata S, Takeda Y, Yasuda M (2003) Angiotensin I-converting enzyme inhibitory peptides isolated from tofuyo fermented soybean food. Biosci Biotechnol Biochem 67:1278–1283

    Article  PubMed  CAS  Google Scholar 

  • Laursen J, Rajagopalan S, Galis Z, Tarpey M, Freeman B, Harrison D (1997) Role of superoxide in angiotensin II-induced but not catecholamine-induced hypertension. Circulation 95:588–593

    PubMed  CAS  Google Scholar 

  • Miyata N, Yamakoshi Y, Nakanishi I (2000) Reactive species responsible for biological actions of photo excited fullerenes. Yakugaku Zasshi 120:1007–1016

    PubMed  CAS  Google Scholar 

  • Modrick ML, Didion SP, Sigmund CD, Faraci FM (2009) Role of oxidative stress and AT1 receptors in cerebral vascular dysfunction with aging. Am J Physiol Heart Circ Physiol 296:H1914–H1919

    Article  PubMed  CAS  Google Scholar 

  • Murkies A (1998) Phytoestrogens what is the current knowledge? Aust Fam Physician 27:S47–S51

    PubMed  Google Scholar 

  • Nestel PJ, Yamashita T, Sasahara T, Pomeroy S, Dart A, Komesaroff P, Owen A, Abbey M (1997) Soy isoflavones improve systemic arterial compliance but not plasma lipids in menopausal and premenopausal women. Arterioscler Thromb Vasc Biol 17:3392–3398

    Article  PubMed  CAS  Google Scholar 

  • Petrescu G, Costuleanu M, Slatineanu SM, Costuleanu N, Foia L, Costuleanu A (2001) Contractile effects of angiotensin peptides in rat aorta are differentially dependent on tyrosine kinase activity. J Renin Angiotensin Aldosterone Syst 2:180–187

    Article  PubMed  CAS  Google Scholar 

  • Rivas M, Garay RP, Escanero JF, Cia P Jr, Cia P, Alda JO (2002) Soy milk lowers blood pressure in men and women with mild to moderate essential hypertension. J Nutr 132:1900–1902

    PubMed  CAS  Google Scholar 

  • Sachse A, Wolf GJ (2007) Angiotensin II-induced reactive oxygen species and the kidney. Am Soc Nephrol 18:2439–2446

    Article  CAS  Google Scholar 

  • Saleh S, Ain-Shoka AA, El-Demerdash E, Khalef MM (2009) Protective effects of the angiotensin II receptor blocker losartan on cisplatin-induced kidney injury. Chemotherapy 55:399–406

    Article  PubMed  CAS  Google Scholar 

  • Schulman IH, Raij L (2008) The angiotensin II type 2 receptor: what is its clinical significance? Curr Hypertens Rep 10:188–193

    Article  PubMed  CAS  Google Scholar 

  • Stumpf C, John S, Jukic J, Yilmaz A, Raaz D, Schmieder R, Daniel W, Garlichs C (2005) Enhanced levels of platelet P-selectin and circulating cytokines in young patients with mild arterial hypertension. J Hypertens 23:995–1000

    Article  PubMed  CAS  Google Scholar 

  • Swanson G, Hanesworth J, Sardinia M, Coleman J, Wright J, Hall K, Miller-Wing A, Stobb J, Cook V, Harding E (1992) Discovery of a distinct binding site for angiotensin II (3–8), a putative angiotensin IV receptor. Regul Pept 40:409–419

    Article  PubMed  CAS  Google Scholar 

  • Touyz RM, Chen X, He G, Quinn MT, Schiffrin EL (2002) Expression of a gp91phox-containing leukocyte-type NADPH oxidase in human vascular smooth muscle cells—modulation by Ang II. Circ Res 90:1205–1213

    Article  PubMed  CAS  Google Scholar 

  • Touyz R, Yao G, Schiffrin E (2003) c-Src induces phosphorylation and translocation of p47phox: role in superoxide generation by angiotensin II in human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 23:981–987

    Article  PubMed  CAS  Google Scholar 

  • Umezawa K, Ariga A, Matsumoto N (2000) Naturally occurring and synthetic inhibitors of NF-kappaB functions. Anticancer Drug Des 15:239–244

    PubMed  CAS  Google Scholar 

  • Vaziri ND, Bai Y, Ni Z, Quiroz Y, Pandian R, Rodriguez-Iturbe B (2007) Intra-renal angiotensin II/AT1 receptor, oxidative stress, inflammation, and progressive injury in renal mass reduction. J Pharmacol Exp Ther 323:85–93

    Article  PubMed  CAS  Google Scholar 

  • Vera R, Sánchez M, Galisteo M, Villar IC, Jimenez R, Zarzuelo A, Pérez-Vizcaíno F, Duarte J (2007) Chronic administration of genistein improves endothelial dysfunction in spontaneously hypertensive rats: involvement of eNOS, caveolin and calmodulin expression and NADPH oxidase activity. Clin Sci (Lond) 112:183–191

    Article  CAS  Google Scholar 

  • Viatour P, Merville M, Bours V, Chariot A (2005) Phosphorylation of NF-[kappa] B and I [kappa] B proteins: implications in cancer and inflammation. Trends Biochem Sci 30:43–52

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Zhang R, Xu Y, Zhou H, Wang B, Li S (2008) Genistein inhibits the development of atherosclerosis via inhibiting NF-kappaB and VCAM-1 expression in LDLR knockout mice. Can J Physiol Pharmacol 86:777–784

    Article  PubMed  CAS  Google Scholar 

  • Wei Y, Sowers JR, Clark SE, Li W, Ferrario CM, Stump CS (2008) Angiotensin II-induced skeletal muscle insulin resistance mediated by NF-kappaB activation via NADPH oxidase. Am J Physiol Endocrinol Metab 294:E345–E351

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Muir AD (2008) Isoflavone content and its potential contribution to the antihypertensive activity in soybean angiotensin I converting enzyme inhibitory peptides. J Agric Food Chem 56:9899–9904

    Article  PubMed  CAS  Google Scholar 

  • Yu BP, Chung HY (2006) Adaptive mechanisms to oxidative stress during aging. Mech Ageing Dev 127:436–443

    Article  PubMed  CAS  Google Scholar 

  • Zafari AM, Ushio-Fukai M, Akers M, Yin Q, Shah A, Harrison DG, Taylor DR, Griendling KK (1999) Novel role of NADH/NADPH oxidase-derived hydrogen peroxide in angiotensin II-induced hypertrophy of rat vascular smooth muscle cells. Hypertension 32:488–495

    Google Scholar 

Download references

Acknowledgments

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (No.2009–0083538).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hae Young Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.M., Uehara, Y., Choi, Y.J. et al. Mechanism of attenuation of pro-inflammatory Ang II-induced NF-κB activation by genistein in the kidneys of male rats during aging. Biogerontology 12, 537–550 (2011). https://doi.org/10.1007/s10522-011-9345-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-011-9345-4

Keywords

Navigation