Skip to main content
Log in

Daily consumption of green tea catechin delays memory regression in aged mice

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Almost all elderly people show brain atrophy and cognitive dysfunction, even if they are saved from illness, such as cardiac disease, malignancy and diabetes. Prevention or delay of brain senescence would therefore enhance the quality of life for older persons. Because oxidative stress has been implicated in brain senescence, we investigated the effects of green tea catechin (GT-catechin), a potential antioxidant, in senescence-accelerated (SAMP10) mice. The mouse is a model of brain senescence with short life span, cerebral atrophy and cognitive dysfunction. Mice were fed water containing 0.02% GT-catechin from 1- to 15-month-old. The mean dose was about 35 mg/kg/day. We found that daily consumption of GT-catechin prevented memory regression and DNA oxidative damage in these mice. GT-catechin did not prolong the lifetime of SAMP10 mice, but it did delay brain senescence. These findings suggest that continued intake of GT-catechin might promote healthy ageing of the brain in older persons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andersen JK (2004) Oxidative stress in neurodegeneration: cause or consequence? Nat Rev Neurosci 5:S18–25

    Article  Google Scholar 

  • Arnaiz SL, D’Amico G, Paglia N, Arismendi M, Basso N, Arnaiz MdRL (2004) Enriched environment, nitric oxide production and synaptic plasticity prevent the aging-dependent impairment of spatial cognition. Mol Aspects Med 25:91–101

    Article  PubMed  CAS  Google Scholar 

  • Bastianetto S, Quirion R (2002) Natural extracts as possible protective agents of brain aging. Neurobiol Aging 23:891–897

    Article  PubMed  CAS  Google Scholar 

  • Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal Biochem 239:70–76

    Article  PubMed  CAS  Google Scholar 

  • Choi YT, Jung CH, Lee SR, Bae JH, Baek WK, Suh MH, Park J, Park CW, Suh SI (2001) The green tea polyphenol (−)-epigallocatechin gallate attenuates beta-amyloid-induced neurotoxicity in cultured hippocampal neurons. Life Sci 70:603–614

    Article  PubMed  CAS  Google Scholar 

  • Devi SA, Kiran TR (2004) Regional responses in antioxidant system to exercise training and dietary vitamin E in aging rat brain. Neurobiol Aging 25:501–508

    Article  PubMed  CAS  Google Scholar 

  • Erdogan C, Ünlüçerçi Y, Türkmem A, Kuru A, Çetin Ö, Bekpinar S (2002) The evolution of oxidative stress in patients with chronic renal failure. Clin Chim Acta 322:157–161

    Article  PubMed  CAS  Google Scholar 

  • Esposito E, Rotilio D, Matteo VD, Giulio CD, Cacchio M, Algeri S (2002) A review of specific dietary antioxidants and the effects on biochemical mechanisms related to neurodegenerative processes. Neurobiol Aging 23:719–735

    Article  PubMed  CAS  Google Scholar 

  • Fernandez CI, Collazo J, Bauza Y, Castellanos MR, Lopez O (2004) Environmental enrichment-behavior-oxidative stress interactions in the aged rat: issues for a therapeutic approach in human aging. Ann N Y Acad Sci 1019:53–57

    Article  PubMed  CAS  Google Scholar 

  • Galli RL, Shukitt-Hale B, Youdim KA, Joseph JA (2002) Fruit polyphenolics and brain aging. Ann N Y Acad Sci 959:128–132

    Article  PubMed  CAS  Google Scholar 

  • Joseph JA, Shukitt-Hale B, Casadesus G (2005) Reversing the deleterious effects of aging on neuronal communication and behavior: beneficial properties of fruit polyphenolic compounds. Am J Clin Nutr 81:313S–316S

    PubMed  CAS  Google Scholar 

  • Kachiwala SJ, Harris SE, Wright AF, Hayward C, Starr JM, Whalley LJ, Deary IJ (2005) Genetic influences on oxidative stress and their association with normal cognitive ageing. Neurosci Lett 386:116–120

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Tahara S, Matsuo M (1997) Retarding effect of dietary restriction on the accumulation of 8-hydroxy-2’-deoxyguanosine in organs of Fisher 344 rats during aging. Free Rad Biol Med 23:76–81

    Article  PubMed  CAS  Google Scholar 

  • Kashima M (1999) Effects of catechins on superoxide and hydroxyl radical. Chem Pharma Bull 47:279–283

    CAS  Google Scholar 

  • Kimura M, Umegaki K, Kasuya Y, Sugusawa A, Higuchi M (2002) The relation between single/double or repeated tea catechin ingestions and plasma antioxidant activity in humans. Eur J Clin Nutr 56:1186–1193

    Article  PubMed  CAS  Google Scholar 

  • Koh SH, Kwon H, Kim KS, Kim J, Kim MH, Yu HJ, Kim M, Lee KW, Do BR, Jung HK, Yang KW, Appel SH, Kim SH (2004) Epigallocatechin gallate prevents oxidative-stress-induced death of mutant Cu/Zn-superoxide dismutase (G93A) motoneuron cells by alteration of cell survival and death signals. Toxicology 202:213–225

    Article  PubMed  CAS  Google Scholar 

  • Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wolgemuth SE, Hofer T, Seo AY, Sullivan R, Jobling WA, Morrow JD, Remmen HV, Sedivy JM, Yamasoba T, Tanokura M, Weindruch R, Leeuweburgh C, Prolla TA (2005) Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309:481–484

    Article  PubMed  CAS  Google Scholar 

  • Levites Y, Weinreb O, Maor G, Youdim MBH, Mandel S (2001) Green tea polyphenol (-)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1,2,3,6- tetrahydro-pyridine-induced dopaminergic neurodegeneration. J Neurochem 78:1073–1082

    Article  PubMed  CAS  Google Scholar 

  • Lu T, Pan Y, Kao S-Y, Li C, Kohane I, Chan J, Yankner BA (2004) Gene regulation and DNA damage in the ageing human brain. Nature 429:883–891

    Article  PubMed  CAS  Google Scholar 

  • Lye TC, Piguet O, Grayson DA, Creasey H, Ridley LJ, Bennett HP, Broe GA (2004) Hippocampal size and memory function in the ninth and tenth decades of life: the Sydney Older Person Study. J Neurol Neurosurg Psychiatry 75:548–554

    Article  PubMed  CAS  Google Scholar 

  • Mariani E, Polidori MC, Cherubini A, Mecocci P (2005) Oxidative stress in brain aging, neurodegenerative and vascular diseases: An overview. J Chromatogr B 827:65–75

    Article  CAS  Google Scholar 

  • McDaniel MA, Maier SF, Einstein GO (2003) “Brain-specific” nutrients: A memory cure? Nutrition 19:957–975

    Article  PubMed  CAS  Google Scholar 

  • Meguro K, Shimada M, Yamaguchi S, Ishizaki J, Ishii H, Shimada Y, Sato M, Yamadori A, Sekita Y (2001) Cognitive function and frontal lobe atrophy in normal elderly adults; Implications for dementia not as aging-related disorders and the reserve hypothesis. Psychiatry Clin Neurosci 55:565–572

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa K, Miyazawa T (1997) Absorption and distribution of tea catechin, (-)-epigallocatechin-3-gallate, in the rat. J Nutr Sci Vitaminol 43:679–684

    PubMed  CAS  Google Scholar 

  • Nanjo F, Mori M, Goto K, Hara Y (1999) Radical scavenging activity of tea catechins and their related compounds. Biosci Biotechnol Biochem 63:1621–1623

    Article  PubMed  CAS  Google Scholar 

  • Navarro A, Boveris A (2004) Rat brain and liver mitochondria develop oxidative stress and lose enzymatic activities on aging. Am J Physiol Regul Integr Comp Physiol 287:R1244–R1249

    PubMed  CAS  Google Scholar 

  • Rezai-Zadeh K., Shytle D, Sun N, Mori T, Hou H, Jeanniton D, Ehrhart J, Townsend K, Zeng J, Morgan D, Hardy J, Town T, Tan J (2005) Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J Neurosci 25:8807–8814

    Article  PubMed  CAS  Google Scholar 

  • Rusinek H, Santi SD, Frid D, Tsui W-H, Tarshish CY, Convit A, de Leon MJ (2003) Regional brain atrophy rate predicts future cognitive decline: 6-year longitudinal MR imaging study of normal aging. Radiology 229:691–696

    PubMed  Google Scholar 

  • Sanz A, Caro P, Ibañez J, Gómez J, Gredilla R, Barja G (2005) Dietary restriction at old age lowers mitochondrial oxygen radical production and leak at complex I and oxidative DNA damage in rat brain. J Bioenerg Biomembr 37:83–90

    Article  PubMed  CAS  Google Scholar 

  • Schmitt-Schillig S, Schaffer S, Weber CC, Eckert GP, Müller WE (2005) Flavonoids and the aging brain. J Physiol Pharmacol 56:23–36

    PubMed  Google Scholar 

  • Serrano F, Klann E (2004) Reactive oxygen species and synaptic plasticity in the aging hippocampus. Ageing Res Rev 3:431–443

    Article  PubMed  CAS  Google Scholar 

  • Shimada A (1999) Age-dependent cerebral atrophy and cognitive dysfunction in SAMP10 mice. Neurobiol Aging 20:125–136

    Article  PubMed  CAS  Google Scholar 

  • Shimada A, Keino H, Satoh M, Kishikawa M, Hosokawa M (2003) Age-related loss of synapses in the frontal cortex of SAMP10 mouse: a model of cerebral degeneration. Synapse 48:198–204

    Article  PubMed  CAS  Google Scholar 

  • Shimada A, Keino H, Satoh M, Kishikawa M, Seriu N, Hosokawa M (2002) Age-related progressive neuronal DNA damage associated with cerebral degeneration in a mouse model of accelerated senescence. J Gerontol Biol Sci Med Sci 57:B415–421

    Google Scholar 

  • Skrzydlewska E, Ostrowska J, Farbiszewski R, Michalak K (2002) Protective effect of green tea against lipid peroxidation in the rat liver, blood serum and the brain. Phytomedicine 9:232–238

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Tabuchi M, Ikeda M, Umegaki K, Tomita T (2004) Protective effects of green tea catechins on cerebral ischemic damage. Med Sci Monit 10:BR166–174

    PubMed  CAS  Google Scholar 

  • Terao J (1999) Dietary flavonoids as antioxidants in vivo: conjugated metabolites of (-)-epicatechin and quercetin participate in antioxidative defense in blood plasma. J Med Investi 46:159–168

    CAS  Google Scholar 

  • Unno K, Takabayashi F, Kishido T, Oku N (2004) Suppressive effect of green tea catechins on morphologic and functional regression of the brain in aged mice with accelerated senescence (SAMP10). Exp Gerontol 39:1027–1034

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Xiong S, Xie C, Markesbery WR, Lovell MA (2005) Increased oxidative damage in nuclear and mitochondrial DNA in Alzheimer’s disease. J Neurochem 93:953–962

    Article  PubMed  CAS  Google Scholar 

  • Ylikoski R, Salonen O, Mäntylä R, Ylikoski A, Keskivaara P, Leskelä M, Erkinjuntti T (2000) Hippocampal and temporal lobe atrophy and age-related decline in memory. Acta Neurol Scand 101:273–278

    Article  PubMed  CAS  Google Scholar 

  • Youdim KA, Spencer JPE, Schroeter H, Rice-Evans C (2002) Dietary flavonoids as potential neuroprotectants. Biol Chem 383:503–519

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported in part by a grant for cooperation of innovative technology and advanced research in evolutional area (City Area).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiko Unno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Unno, K., Takabayashi, F., Yoshida, H. et al. Daily consumption of green tea catechin delays memory regression in aged mice. Biogerontology 8, 89–95 (2007). https://doi.org/10.1007/s10522-006-9036-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-006-9036-8

Keywords

Navigation