Skip to main content

Advertisement

Log in

Identification of QTLs Influencing Alcohol Preference in the High Alcohol Preferring (HAP) and Low Alcohol Preferring (LAP) Mouse Lines

  • Published:
Behavior Genetics Aims and scope Submit manuscript

 

The High- and Low-Alcohol Preferring (HAP1/LAP1 and HAP2/LAP2) mouse lines were developed by selective breeding for differences in alcohol preference. They represent the only extant selectively bred mouse lines developed for this alcohol phenotype. Therefore, they provide a unique resource for QTL detection and mapping. Importantly, neither of the replicate lines is inbred and therefore, novel study designs can be employed to detect loci contributing to alcohol preference. Two independent studies, with very different approaches, were conducted in the HAP and LAP replicate lines. In Study 1, microsatellite markers were genotyped in the replicate HAP1/LAP1 and HAP2/LAP2 mice in QTL regions nominated by other mouse RI and F2 studies in order to detect divergence of allele frequencies in the two oppositely selected lines. Significant differences in allele frequencies were observed in the HAP1/LAP1 mice with markers on chromosome 9 (p<0.01). In the HAP2/LAP2 mice, significant differences in allele frequencies were identified on chromosomes 2 and 9 (p<0.01). In Study 2, a genome-wide screen was performed in a sample of 432 HAP1×LAP1 F2 animals and a QTL on chromosome 9 (LOD=5.04) was found which met criteria for genome wide significance (p<0.001). Gender specific analyses supported a greater effect of the QTL among female mice (LOD=5.19; p<0.0008) than male mice (LOD=1.19). This study provides additional evidence and confirmation that specific regions on chromosomes 9 and perhaps 2 are important for alcohol preference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  • Belknap J. K., Atkins A. L. (2001). The replicability of QTLs for murine alcohol preferences drinking behavior across eight independent studies. Mamm. Genome 12: 893–899

    Article  PubMed  CAS  Google Scholar 

  • Belknap J. K., Crabbe J. C., Young E. R. (1993). Volunatary consumption of ethanol in 15 inbred mouse strains. Psychopharmacology 112: 503–510

    Article  PubMed  CAS  Google Scholar 

  • Belknap J. K., Richards S. P., O’Toole L. A., Helms M. L., Phillips T. J. (1997). Short-term selective breeding as a tool for QTL mapping: ethanol preference drinking in mice. Behav. Genet. 27: 55–66

    Article  PubMed  CAS  Google Scholar 

  • Bice P. J., Foroud T., Bo R., Castelluccio P., Lumeng L., Li T.-K., Carr L. G. (1998). Genomic screen or QTLs underlying alcohol consumption in the P and NP rat lines. Mamm. Genome 9: 949–955

    Article  PubMed  CAS  Google Scholar 

  • Blum K., Braverman E. R., Holder J. M., Lubar J. F., Monastra V. J., Miller D., Lubar J. O., Chen T. J., Comings D. (2000). Reward definciency syndrome: a biogenetic model for the diagnosis and treatment of impulsive, addictive, and compulsive behaviors. J. Psychoactive Drugs 32(Suppl. i–iv): 1–112

    Google Scholar 

  • Blum K., Braverman E. R., Wu S., Cull J. G., Chen T. J., Gill J., Wood R., Eisenberg A., Sherman M., Davis K. R., Mattthews D., Fisher L., Schnautz N., Walsh W., Pontius A., Zedar M., Kaats G., Comings D. (1997). Assocaition of polymorphisms of dopamie D2 receptor (DRD2), and dopamine transporter (DAT1) genes with schizoid/avoidant behaviors (SAB). Mol. Psychiatry 2(3): 239–246

    Article  PubMed  CAS  Google Scholar 

  • Blum K., Sheridan P. J., Wood R. C., Braverman E. R., Chen T. J., Cull J. G., Comings D. E. (1996). The D2 receptor gene as a determinant of reward deficiency syndrome, J. R. Soc. Med. 89(7): 396–400

    PubMed  CAS  Google Scholar 

  • Blum K., Sheridan P. J., Wood R. C., Braveman E. R., Chen T. J., Cull J. G., Comings D. E. (1995). Dopamine D2 receptor gene variants: association and linkage studies in impulsive-addictive-compulsive behavior. Pharmacogenetics 5(3): 121–141

    Article  PubMed  CAS  Google Scholar 

  • Cagetti E., Liang J., Spigelman L., Olsen R. W. (2003). Withdrawal from chronic intermittent ethanol treatment changes subunit composition, reduces synaptic function, and decreases behavioral responses to positive allosteric modulators of GABAA receptors. Mol. Pharmacol. 63(1): 53–64

    Article  PubMed  CAS  Google Scholar 

  • Carr L., Foroud T., Bice P., Gobbett T., Ivashine J., Edenberg H., Lumeng L., Li T.-K. (1998). Mapping of a quantitative locus for alcohol consumption in selectively bred rat lines. Alcoholism: Clinical and Experimental Research 22: 884–887

    CAS  Google Scholar 

  • Carr L. G., Spence J. P., Peter Erikson C. J., Lumeng L., Li T.-K. (2003). AA and ANA rats exhibit the R100Q mutation in the GABAA receptor alpha 6 subunit. Alcohol 31(1–2): 93–97

    Article  PubMed  CAS  Google Scholar 

  • Cigler T., LaForge K. S., McHugh P. F., Kapadia S. U., Leal S. M., Kreek M. J. (2001). Novel and previously reported single-nucleotide polymorphism in the human 5-HT(1B) receptor gene: no association with cocaine or alcohol abuse or dependence. Am. J. Med. Genet. 105(6): 489–497

    Article  PubMed  CAS  Google Scholar 

  • Covault J., Gelernter J., Hesselbrock V., Nellissery M., Kranzler H. R. (2004). Allelic and Haplotypic Association of GABARA2 With Alcohol Dependence. Am. J. Med. Genet. B Neuropsychiatr. Genet. 129B: 104–109

    Article  Google Scholar 

  • Crabble J. C., Phillips T. J., Feller D. J., Hen R., Wenger C. D., Lessov C. N., Schafer G. L. (1996). Elevated alcohol consumption in null mutant mice lacking 5-HT1B serotonin receptors. Nat. Genet. 14(1):98–101

    Article  Google Scholar 

  • Di Chiara G., Imperato A. (1988). Drugs abused by humans preferentially increase synaptic dopamine concentration in the mesolimbic system of freely moving rats. Proc. Natl. Acad. USA 85: 5274–5278

    Article  CAS  Google Scholar 

  • Doerge R. W., Chruchill G. A. (1996). Permutation tests for multiple loci affecting a quantitative character. Genetics 142: 285–294

    PubMed  CAS  Google Scholar 

  • Dyr W., McBride W. J., Lumeng L., Li T.-K. (1993). Effects of D1 and D2 dopamine receptor agents on ethanol consumption in the high-alcohol-drinking (HAD) line of rats. Alcohol 10: 207–212

    Article  PubMed  CAS  Google Scholar 

  • Edenberg H. J., Dick D. M., Xuei X., Tian H., Almasy L., Bauer L. O., Crowe R. R., Goate A., Hesselbrock V., Jones K., Kwon J., Li T.-K., Nurnberger J. I. Jr., O’Connor S. J., Reich T., Rice J., Schuckit M. A., Porjesz B., Foroud T., Begleiter H. (2004). Variations in GABRA2, encoding the alpha 2 subunit of the GABA(A) receptor, are associated with alcohol dependence and with brain oscillations. Am. J. Human Genet. 74(4): 705–714

    Article  CAS  Google Scholar 

  • Edenberg H. J., Foroud T., Koller D. L., Goate A., Rice J., Van Eerdewegh P., Reich T., Cloninger C. R., Nurnberger J. I., Jr. Kowalczuk M., Wu B., Li T. K., Conneally P. M., Tischfield J. A., Wu W., Shears S., Crowe R., Hesselbrock V., Schuckit M., Porjesz B., Begleiter H. (1998). A family-based analysis of the association of the dopamine D2 receptor (DRD2) with alcoholism. Alcohol. Clin. Exp. Res 22(2): 505–12

    PubMed  CAS  Google Scholar 

  • Falconer D. S., Mackay T. F. C. (1996). Introduction to Quantitative Genetics. (4th Ed.). Longman, Essex, UK.

    Google Scholar 

  • Fehr C., Grintschuk N., Szegedi A., Anghelescu I., Klawe C., Singer P., Hiemke C., Dahmen N. (2000). The HTR1B 861G>C receptor polymorphism among patients suffering from alcoholism, major depression, anxiety disorders and narcolepsy. Psychiatr. Res. 97(1): 1–10

    Article  CAS  Google Scholar 

  • Flint J., Mott R. (2001). Finding the molecular basis of quantitative traits: successes and pitfalls. Nat. Rev./Genet. 2: 437–445

    Article  CAS  Google Scholar 

  • Foroud T., Bice P., Castelluccio P., Bo R., Miller L., Ritchotte A., Lumeng L., Li T.-K., Carr, L. G. (2000). Identification of quantitative trait loci influencing alcohol consumption in the high alcohol drinking an low alcohol drinking rat lines. Behav. Genet. 30(2): 131–140

    Article  PubMed  CAS  Google Scholar 

  • Gelernter J., Goldman D., Risch N. (1993). The A1 allele at the D2 dopamine receptor gene and alcoholism. A reappraisal. JAMA 269(13): 1673–1677

    Article  PubMed  CAS  Google Scholar 

  • Gill K., Desaulniers N., Desjardins P., Lake K. (1998). Alcohol preference in AXB/BXA recombinant inbred mice: gender differences and gender-specific quantitative trait loci. Mamm. Genome 9: 929–935

    Article  PubMed  CAS  Google Scholar 

  • Goldman D. (1993). The DRD2 dopamine receptor and the candidate gene approach in alcoholism. Alcohol Alcohol. Supplement 2: 27–29

    Google Scholar 

  • Goldman D., Urbanek M., Guenther D., Robin R., Long J. C. (1997). Linkage and association of functional DRD2 variant [Ser311Cys] and DRD2 makers to alcoholism, substance abuse and schizophrenia in Southwestern American Indians. Am. J. Med. Genet. 74(4): 386–394

    Article  PubMed  CAS  Google Scholar 

  • Gorwood P., Aissi F., Batel P., Ades J., Cohen-Salmon C., Hamon M., Boni C., Lanfumey L. (2002). Reappraisal of the serotonin 5-HT(1B) receptor gene in a alcoholism: of mice and men. Brain Res. Bull. 57(1): 103–107

    Article  PubMed  CAS  Google Scholar 

  • Grahame N., Li T.-K., Lumeng L. (1999). Selective breeding for high and low ethanol preference in mice. Behav. Genet. 29: 47–57

    Article  PubMed  CAS  Google Scholar 

  • Green, P., Lange, K., and Cox, D. R. (1990). Documentation for CRIMAP, version 2.4, St. Louis: Department of Genetics, School of Medicine, Washington University, 1990

  • Grobin A. C., Mathews D. B., Devaud L. L., Morrow A. L. (1998). The role of GABAA receptors in the acute and chronic effects of ethanol. Psychopharmacology 139: 2–19

    Article  PubMed  CAS  Google Scholar 

  • Haley C. S., Knott S. A., Elsen J. M. (1994). Mapping quantitative trait loci in crosses between outbred lines using least squares. Genetics 136: 1195–1207

    PubMed  CAS  Google Scholar 

  • Hasegawa Y., Higuchi S., Matsushita S., Miyaoka H. (2002). Association of polymorphism of the serotonin 1B receptor gene and alcohol dependence with inactive aldehyde dehydrogenase-2. J. Neural Transm. 109(4): 513–521

    Article  PubMed  CAS  Google Scholar 

  • Hill E. M., Stoltenberg S. F., Bullard K. H., Li S., Zucker R. A., Burmeister M. (2002). Antisocial alcoholism and serotonin-related polymorphisms: association tests. Psychiatr. Genet. 12(3): 143–153

    Article  PubMed  Google Scholar 

  • Hodge C. W., Samson H. H., Chappelle A. M. (1997). Alcohol self-administration: further examinations of the role of dopamine receptors in the nucleus accumbens. Alcohol. Clin. Exp. Res. 21: 1083–1091

    PubMed  CAS  Google Scholar 

  • Keightley P. D., Bulfield G. (1993). Detection of quantiative trait loci from frequency changes of marker alleles under selection. Genet. Res. 62: 195–203

    Article  PubMed  CAS  Google Scholar 

  • Koob G. F., Bloom F. E. (1988). Cellular and molecular mechanisms of drug dependence. Science 242: 715–723

    Article  PubMed  CAS  Google Scholar 

  • Kranzler H. R., Hernandez-Avila C. A., Gelernter J. (2002). Polymorphism of the 5-HT1B receptor gene (HTR1B): strong within-locus linkage disequilibrium without association to antisocial substance dependence. Neuropsychopharmaclogy 26(1): 115–122

    Article  CAS  Google Scholar 

  • Lander E., Kruglyak L. (1995). Genetic dissection of complex traits: guide-lines for interpreting and reporting linkage results. Nat. Genet. 11: 241–247

    Article  PubMed  CAS  Google Scholar 

  • Lappalainen J., Long J. C., Eggert M., Ozaki N., Robin R.W., Brown G. L., Naukkarinen H., Virkkunen M., Linnoila M., Goldman D. (1998). Linkage of antisocial alcoholism to the serotonin 5-HT1B receptor gene in 2 populations. Arch. Gen. Psychiatry 55: 989–884

    Article  PubMed  CAS  Google Scholar 

  • Lebowitz R. J., Stoller M., Beckmann J. S. (1987). Trait-based analyses for the detection of linkage between marker loci an quantitative trait loci in crosses between inbred lines. Theor. Appl. Genet. 73: 556–562

    Article  Google Scholar 

  • Lister R. G., Linnoila M. (1991). Alcohol, the chloride ionophore and endogenous ligands for benzodiazepine receptors. Neuropharmacology 30(12B): 1435–1440

    PubMed  CAS  Google Scholar 

  • Low K., Crestani F., Keist R., Benke D., Brunig I., Benson J.A., Fritschy J. M., Rulicke T., Bluethmann H., Mohler H. (2000). Molecular and neuronal substrate for the selective attenuation of anxiety. Science 290: 131–134

    Article  PubMed  CAS  Google Scholar 

  • McClearn, G. E., Wilson, J. R., and Meridith, W. (1970). In G. Lindzey and D. D. Thiessen (eds.), Contributations to Behavior-Genetic Analysis: The Mouse as a Prototype, New York: Appleton-Century-Crofts, pp. 3–22

  • Melo J. A, Shendure J, Pociask K, Silver M. (1996). Identification of sex-specific quantitative trait loci controlling alcohol preference in C57BL/6 mice. Nature Genetics 13: 147–153.

    Article  PubMed  CAS  Google Scholar 

  • Nuzhdin S.V., Keightley P. D., Pasyukova E. G., Morozova E. A. (1998). Mapping quantitative trait loci affecting sternopleural bristle number in Drosophila melanogaster using changes of marker allele frequencies in divergently selected lines. Genet. Res. 72: 79–91

    Article  PubMed  CAS  Google Scholar 

  • Phillips T. J., Crabble J. C., Metten P., Belknap J. K. (1994). Location of genes affecting alcohol drinking in mice. Alcohol. Clin. Exp. Res. 18: 931–941

    Article  PubMed  CAS  Google Scholar 

  • Phillips T. J., Shen E. H. (1996). Neruochemical bases of locomotion and ethanol stimulant effects. Int. Rev. Neurobiol. 39: 243–282

    PubMed  CAS  Google Scholar 

  • Phillips T. J., Brown K. J., Burkhart-Kasch S., Wenger C. D., Kelly M. A., Rubinstein M., Grandy D. K., Low M. J. (1998). Alcohol preference and sensitivity are markedly reduced in mice lacking dopamine D2 receptors. Nat. Neurosci. 1(7): 610–615

    Article  PubMed  CAS  Google Scholar 

  • Rodgers D. A. (1972). Factors underlying differences in alcohol preference in inbred strains of mice. In: Kissin B., Begleiter H. (eds). The Biology of Alcoholism. Plenum, NY, pp. 107–130

    Google Scholar 

  • Rudolph U., Crestani F., Benke D., Brunig I., Benson J. A., Fritschy J. M., Martin J. R., Bluethmann H., Mohler H. (1999). Benzodiazepine actions mediated by specific gamma-aminobutric acid (A) receptor subtypes. Nature 401: 796–800

    Article  PubMed  CAS  Google Scholar 

  • Saba L., Porcella A., Congeddu E., Colombo G., Peis M., Pistis M., Gessa G. L., Pani L. (2001). The R100Q mutation of the GABAA α6 receptor subunit may contribute to voluntary aversion to ethanol in the sNP rat line. Brain Res. Mol. Brain Res. 87: 263–270

    Article  PubMed  CAS  Google Scholar 

  • Samson H. H., Hodge C. W., Tolliver G. A., Haraguchi M. (1993). Effects of dopamine agonists and antagonists on ethanol-reinforced behavior: the environment of the nucleus accumbens. Brain Res. Bull. 30: 133–141

    Article  PubMed  CAS  Google Scholar 

  • Samson H. H., Tolliver G. A., Schwarz-Stevens K. (1990). Oral ethanol self-administration: a behavioral pharmacological approach to CNS contron mechanisms. Alcohol 7: 187–191

    Article  PubMed  CAS  Google Scholar 

  • Seaton G., Haley C. S., Knott S. A., Kearsey M., Visscher P. M. (2002). QTL Express: mapping quantitative trait loci in simple and complex pedigrees. Bioinformatics 18: 339–340

    Article  PubMed  CAS  Google Scholar 

  • Sokal R. R., Rohlf, F. J. (1995). Biometry. Freeman, San Francisco

    Google Scholar 

  • Sun H.F., Chang Y. T., Fann C. S., Chang C. J., Chen Y. H., Hsu Y. P., Yu W. Y., Cheng A. T. (2002). Association study of novel human serotonin 5-HT(1B) polymorphisms with alcohol dependence in Taiwanese Han. Biol. Psychiatry 51(11): 896–901

    Article  PubMed  CAS  Google Scholar 

  • Tarantino L. M., McClearn G. E., Rodriguez L. A., Plomin R. (1998). Confirmation of quantitative trait loci for alcohol preference in mice. Alcohol. Clin. Exp. Res. 22: 1099–1105

    PubMed  CAS  Google Scholar 

  • Tauber M., Calame-Droz E., Prut L., Rudolph U., Crestani F. (2003). Alpha2-gamma-Aminobutyric acid (GABA)A receptors are the molecular substrates mediating precipitation of narcosis but not of sedation by the combined use of diazepam and alcohol in vivo. Eur. J. Neurosci. 18: 2599–2604

    Article  PubMed  Google Scholar 

  • Wise R. A., Bozarth M. A. (1987). A psychomotor stimulant theory of addiction. Psychol. Rev. 94: 469–492

    Article  PubMed  CAS  Google Scholar 

  • Witmer P. D., Dohney K. F., Adams M. K., Boehm C. D., Dizon J. S., Goldstein J. L., Templeton T. M., Wheaton A. M., Dong P. N., Pugh E. W., Nussbaum R. L., Hunter K., Kelmenson J. A., Bowe L. B., Brownstein M. J. (2003). The development of a highly informative mouse simple sequence length polymoriphism (SSLP) marker set and construction of a mouse family tree using parsimony analysis. Genome Research 13: 485–491

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Howard Edenberg for allowing us to use the Core Facility to perform the genotyping. We especially thank Dr. Tian Huijun for her assistance in using the Genetic Analyzer. A special thanks goes to Christina Payne for her work in the development and phenotyping of the F2 mice used in the genome screen. We also thank Dr. Michael Econs and members of his laboratory for their assistance and advice. This project was supported by NIH/NIAAA Grants KO1 AA000296 and K02 AA00285.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula J. Bice.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bice, P.J., Foroud, T., Carr, L.G. et al. Identification of QTLs Influencing Alcohol Preference in the High Alcohol Preferring (HAP) and Low Alcohol Preferring (LAP) Mouse Lines. Behav Genet 36, 248–260 (2006). https://doi.org/10.1007/s10519-005-9019-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10519-005-9019-6

Keywords

Navigation