Skip to main content
Log in

Generalization of the collision cone approach for motion safety in 3-D environments

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

Avoidance of collision between moving objects in a 3-D environment is fundamental to the problem of planning safe trajectories in dynamic environments. This problem appears in several diverse fields including robotics, air vehicles, underwater vehicles and computer animation. Most of the existing literature on collision prediction assumes objects to be modelled as spheres. While the conservative spherical bounding box is valid in many cases, in many other cases, where objects operate in close proximity, a less conservative approach, that allows objects to be modelled using analytic surfaces that closely mimic the shape of the object, is more desirable. In this paper, a collision cone approach (previously developed only for objects moving on a plane) is used to determine collision between objects, moving in 3-D space, whose shapes can be modelled by general quadric surfaces. Exact collision conditions for such quadric surfaces are obtained and used to derive dynamic inversion based avoidance strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Belkouche, F. (2009). Reactive path planning in a dynamic environment. IEEE Transactions on Robotics, 25(4).

  • Belkouche, F., & Belkouche, B. (2008). Kinematics-based characterization of the collision course. International Journal of Robotics and Automation, 23(2).

  • Bendjilali, K., & Belkhouche, F. (2009). Collision course by transformation of coordinates and plane decomposition. Robotica.

  • Carbone, C., Ciniglio, U., Corraro, F., & Luongo, S. (2006). A novel 3-D geometric algorithm for aircraft autonomous collision avoidance. In Proc. of the 45th IEEE conference on decision and control (pp. 1580–1585). San Diego, CA, USA, December 2006.

    Chapter  Google Scholar 

  • Chakravarthy, A., & Ghose, D. (1996). Capturability of realistic generalized true proportional navigation. IEEE Transactions on Aerospace and Electronic Systems, 32(1), 407–417.

    Article  Google Scholar 

  • Chakravarthy, A., & Ghose, D. (1998). Obstacle avoidance in a dynamic environment: a collision cone approach. IEEE Transactions on Systems, Man and Cybernetics. Part A. Systems and Humans, 28(5), 562–574.

    Article  Google Scholar 

  • Chakravarthy, A., & Ghose, D. (2011). Collision cones for quadric surfaces. IEEE Transactions on Robotics, 27(6).

  • Choi, Y.-K., Wang, W., Liu, Y., & Kim, M.-S. (2006). Continuous collision detection for two moving elliptic disks. IEEE Transactions on Robotics, 22(2), 213–224.

    Article  Google Scholar 

  • Choi, Y.-K., Chang, J.-W., Wang, W., Kim, M.-S., & Elber, G. (2009). Continuous collision detection for ellipsoids. IEEE Transactions on Visualization and Computer Graphics, 15(2), 311–324.

    Article  Google Scholar 

  • Ferrara, A., & Paderno, J. (2006). Application of switching control for automatic pre-crash collision avoidance in cars. Nonlinear Dynamics, 46, 307–321.

    Article  MATH  Google Scholar 

  • Ferrara, A., & Rubagotti, M. (2007). Sliding mode control of a mobile robot for dynamic obstacle avoidance based on a time-varying harmonic potential field. In ICRA 2007 workshop on planning, perception and navigation for intelligent vehicles, Roma, Italy, 2007.

    Google Scholar 

  • Ferrara, A., & Vecchio, C. (2007). Collision avoidance strategies and co-ordinated control of passenger vehicles. Nonlinear Dynamics, 49, 475–492.

    Article  MATH  Google Scholar 

  • Ferrara, A., & Vecchio, C. (2009). Second order sliding mode control of vehicles with distributed collision avoidance capabilities. Mechatronics, 19, 471–477.

    Article  Google Scholar 

  • Fiorini, P., & Shiller, Z. (1998). Motion planning in dynamic environments using velocity obstacles. The International Journal of Robotics Research, 17.

  • Fraichard, T., & Delsart, V. (2009). Navigating dynamic environments with trajectory deformation. Journal of Computing and Information Technology, 17(1).

  • Frazzoli, E., Mao, Z. H., Oh, J. H., & Feron, E. (2001). Aircraft conflict resolution via semi-definite programming. Journal of Guidance, Control, and Dynamics, 24(1), 79–86.

    Article  Google Scholar 

  • Goerzen, C., Kong, Z., & Mettler, B. (2010). A survey of motion planning algorithms from the perspective of autonomous UAV guidance. Journal of Intelligent & Robotic Systems, 57, 65–100.

    Article  MATH  Google Scholar 

  • Gross, J., Rajvanshi, R., & Subbarao, K. (2004). Aircraft collision detection and resolution using mixed geometric and collision cone approaches. In Proc. of AIAA guidance, navigation and control conference, Rhode Island, Providence, USA. Paper No. AIAA 2004-4879.

    Google Scholar 

  • Guelman, M. (1976). The closed form solution of true proportional navigation. IEEE Transactions on Aerospace and Electronic Systems, AES-12(4), 472–482.

    Article  MathSciNet  Google Scholar 

  • Guruprasad, K. R., & Ghose, D. (2008). Heterogeneous sensor based Voronoi decomposition for spatially distributed limited range locational optimization. In D.-S. Kim & K. Sugihara (Eds.), Voronoi’s impact on modern science, Book 4: Vol. 2. Proceedings of 5th annual international symposium on Voronoi diagrams (ISVD 2008) (pp. 78–87). Kiev, Ukraine, September 2008.

    Google Scholar 

  • Hilbert, D., & Cohn-Vossen, S. (1952). Geometry and the imagination. New York: Chelsea.

    MATH  Google Scholar 

  • Ju, M.-Y., Liu, J.-S., Shiang, S.-P., Chien, Y.-R., Hwang, K.-S., & Lee, W. C. (2001). A novel collision detection method based on enclosed ellipsoid. In Proc. of the 2001 IEEE international conference on robotics and automation (pp. 2897–2901). Seoul, Korea.

    Google Scholar 

  • Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile robots. International Journal of Robotics Research, 5(1).

  • Kim, C., Haas, C. T., Liapi, K. A., & Caldas, C. H. (2006). Human-assisted obstacle avoidance system using 3D workspace modeling for construction equipment operation. Journal of Computing in Civil Engineering, 177–186.

  • Lalish, E., & Morgansen, K. A. (2008). Decentralized reactive collision avoidance for multi-vehicle systems. In Proc. of 47th IEEE conference on decision and control, Cancun, Mexico, December 2008.

    Google Scholar 

  • Large, F., Laugier, C., & Shiller, Z. (2005). Navigation among moving obstacles using the NLVO: principles and applications to intelligent vehicles. Autonomous Robots, 19, 159–171.

    Article  Google Scholar 

  • Lin, C. (1991). Modern navigation, guidance and control processing. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Lozano-Perez, T. (1983). Spatial planning: A configuration space approach. IEEE Transactions on Computing, C-32.

  • Shiller, Z., Large, F., & Sekhavat, S. (2001). Motion planning in dynamic environments: obstacles moving along arbitrary trajectories. In Proc. of the 2001 IEEE international conference on robotics and automation, Seoul, Korea.

    Google Scholar 

  • Shiller, Z., Gal, O., & Fraichard, T. (2010). The nonlinear velocity obstacle revisited: The optimal time horizon, Workshop on guaranteeing safe navigation in dynamic environments. In IEEE international conference on robotics and automation, May 2010.

    Google Scholar 

  • Shneydor, N. A. (1998). Missile guidance and pursuit: kinematics, dynamics, and control. Horwood: Chichester.

    Google Scholar 

  • Slotine, J., & Li, W. (1991). Applied nonlinear control. New York: Prentice Hall.

    MATH  Google Scholar 

  • Tyan, F. (2005). Unified approach to missile guidance laws: a 3D extension. IEEE Transactions on Aerospace and Electronic Systems, 41(4).

  • Watanabe, Y., Calise, A. J., Johnson, E. N., & Evers, J. H. (2006a). Minimum-effort guidance for vision-based collision avoidance. In Proc. of AIAA atmospheric flight mechanics conference, Keystone, Colorado, USA, August 2006. Paper No. AIAA 2006-6641.

    Google Scholar 

  • Watanabe, Y., Johnson, E. N., & Calise, A. J. (2006b). Vision-based guidance design from sensor trajectory optimization. In Proc. of AIAA atmospheric flight mechanics conference, Keystone, Colorado, USA. August 2006. Paper No. AIAA 2006-6607.

    Google Scholar 

  • Watanabe, Y., Calise, A. J., & Johnson, E. N. (2007a). Vision-based obstacle avoidance for UAVs. In Proc. of AIAA guidance, navigation and control, Hilton Head, South Carolina, USA, August 2007. AIAA 2007-6829.

    Google Scholar 

  • Watanabe, Y., Johnson, E. N., & Calise, A. J. (2007). Stochastically optimized monocular vision-based guidance design. In Proc. of AIAA atmospheric flight mechanics conference, Hilton Head, South Carolina, USA, August 2007. Paper No. AIAA 2007-6865.

    Google Scholar 

  • Zarchan, P. (1990). Tactical and strategic missile guidance. Washington: AIAA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Animesh Chakravarthy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakravarthy, A., Ghose, D. Generalization of the collision cone approach for motion safety in 3-D environments. Auton Robot 32, 243–266 (2012). https://doi.org/10.1007/s10514-011-9270-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-011-9270-z

Keywords

Navigation