Skip to main content
Log in

3D mapping with multi-resolution occupied voxel lists

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

Most current navigation algorithms in mobile robotics produce 2D maps from data provided by 2D sensors. In large part this is due to the availability of suitable 3D sensors and difficulties of managing the large amount of data supplied by 3D sensors. This paper presents a novel, multi-resolution algorithm that aligns 3D range data stored in occupied voxel lists so as to facilitate the construction of 3D maps. Multi-resolution occupied voxel lists (MROL) are voxel based data structures that efficiently represent 3D scan and map information. The process described in this research can align a sequence of scans to produce maps and localise a range sensor within a prior global map. An office environment (200 square metres) is mapped in 3D at 0.02 m resolution, resulting in a 200,000 voxel occupied voxel list. Global localisation within this map, with no prior pose estimate, is completed in 5 seconds on a 2 GHz processor. The MROL based sequential scan matching is compared to a standard iterative closest point (ICP) implementation with an error in the initial pose estimate of plus or minus 1 m and 90 degrees. MROL correctly scan matches 94% of scans to within 0.1 m as opposed to ICP with 30% within 0.1 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Burgard, W., Fox, D., Hennig, D., & Schmidt, T. (1996). Estimating the absolute position of a mobile robot using position probability grids. In AAAI/IAAI (Vol. 2, pp. 896–901).

  • Burgard, W., Derr, A., Fox, D., & Cremers, A. (1998). Integrating global position estimation and position tracking for mobilerobots: the dynamic Markov localization approach. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems.

  • Burgard, W., Cremers, A. B., Fox, D., Hähnel, D., Lakemeyer, G., Schulz, D., Steiner, W., & Thrun, S. (1999). Experiences with an interactive museum tour-guide robot. Artificial Intelligence, 114(1–2), 3–55.

    Article  MATH  Google Scholar 

  • Burgard, W., Moors, M., Stachniss, C., & Schneider, F. (2005). Coordinated multi-robot exploration. IEEE Transactions on Robotics, 21, 376–386.

    Article  Google Scholar 

  • Choset, H., & Nagatani, K. (2001). Topological simultaneous localization and mapping (SLAM): toward exact localization without explicit localization. IEEE Transactions on Robotics and Automation, 17(2), 125–137.

    Article  Google Scholar 

  • Cole, D., & Newman, P. (2006). Using laser range data for 3D SLAM in outdoor environments. In Proceedings of the IEEE international conference on robotics and automation (ICRA) (pp. 1556–1563).

  • Dellaert, F., Burgard, W., Fox, D., & Thrun, S. (1999). Using the condensation algorithm for robust, vision-based mobile robot localization. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition.

  • Elfes, A. (1987). Sonar-based real-world mapping and navigation. IEEE Journal of Robotics and Automation, 3(3), 249–265.

    Article  Google Scholar 

  • Elfes, A. (1991). Dynamic control of robot perception using stochastic spatial models. In G. Schmidt (Ed.), Information processing in mobile robots. Invited Paper presented at the international workshop on information processing in mobile robots, Technische Universität München, Germany, March 6–8, 1991.

  • Fox, D. (1998). Markov localization: a probabilistic framework for mobile robot localization and navigation. PhD thesis, University of Bonn.

  • Fox, D. (2003). Adapting the sample size in particle filters through KLD-sampling. International Journal of Robotics Research, 22(12), 985–1003.

    Article  Google Scholar 

  • Fox, D., Burgard, W., Dellaert, F., & Thrun, S. (1999). Monte Carlo localization: efficient position estimation for mobile robots. In AAAI/IAAI (pp. 343–349).

  • González, J., Blanco, J., Galindo, C., Ortiz-de Galisteo, A., Fernández-Madrigal, J., Moreno, F., & Martínez, J. (2009). Mobile robot localization based on ultra-wide-band ranging: a particle filter approach. Robotics and Autonomous Systems, 57(5), 496–507. doi: 10.1016/j.robot.2008.10.022.

    Article  Google Scholar 

  • González-Baños, H., & Latombe, J. (2002). Navigation strategies for exploring indoor environments. The International Journal of Robotics Research, 21(10–11), 829–848.

    Article  Google Scholar 

  • Gustafsson, F., Gunnarsson, F., Bergman, N., Forssell, U., Jansson, J., Karlsson, R., & Nordlund, P. (2002). Particle filters for positioning, navigation and tracking. IEEE Transactions on Signal Processing.

  • Hager, G., & Burschka, D. (2000). Laser-based position tracking and map generation. In Proceedings of the IEEE international conference on robotics and automation (ICRA) (pp. 149–155).

  • Hähnel, D., Schulz, D., & Burgard, W. (2002). Map building with mobile robots in populated environments. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS).

  • Howard, A., Wolf, D., & Sukhatme, G. (2004). Towards 3D mapping in large urban environments. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS), Sendai, Japan (Vol. 1, pp. 419–424).

  • Hu, H., & Gu, D. (2000). Landmark-based navigation of industrial mobile robots. Industrial Robot: An International Journal, 27(6), 458–467.

    Article  Google Scholar 

  • Jensfelt, P., Austin, D., Wijk, O., & Andersson, M. (2000). Feature based condensation for mobile robot localization. In Proceedings of the IEEE international conference on robotics and automation (ICRA) (pp. 2531–2537).

  • Jeong, W., & Lee, K. (2005). CV-SLAM: a new ceiling vision-based slam technique. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 3195–3200).

  • Konolige, K., & Gutmann, S. (2000). Incremental mapping of large cyclic environments. In International symposium on computer intelligence in robotics and automation (CIRA) (pp. 318–325).

  • Kuipers, B., & Beeson, P. (2002). Bootstrap learning for place recognition. In Proceedings of the AAAI conference on artificial intelligence. Edmonton, Canada (pp. 174–180).

  • Kümmerle, R., Triebel, R., Pfaff, P., & Burgard, W. (2008). Monte Carlo localization in outdoor terrains using multilevel surface maps. Journal of Field Robotics, 25(6–7), 346–359.

    Article  Google Scholar 

  • Lee, D. (1995). The map-building and exploration strategies of a simple, sonar-equipped, mobile robot; an experimental, quantative evaluation. PhD thesis, University College, London.

  • Lenser, S., & Veloso, M. (2000). Sensor resetting localization for poorly modelled mobile robots. In Proceedings of the IEEE international conference on robotics and automation (ICRA).

  • Lim, J., & Cho, D. (1992). Physically based sensor modelling for a sonar map in a specular environment. In Proceedings of the IEEE international conference on robotics and automation (ICRA), Nice, France (pp. 1714–1718).

  • Lingemann, K., Surmann, H., Nüchter, A., & Hertzberg, J. (2004). Indoor and outdoor localization for fast mobile robots. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS), Sendai, Japan (Vol. 3, pp. 2185–2190).

  • Montemerlo, M., & Thrun, S. (2004). Large-scale robotic 3D mapping of urban structures. In Proceedings of the international symposium on experimental robotics (ISER), Singapore.

  • Moravec, H. (1989). Certainty grids for sensor fusion in mobile robots. In Sensor devices and systems for robotics (pp. 253–276).

  • Nüchter, A., Lingemann, K., Hertzberg, J., & Surmann, H. (2005). Heuristic-based laser scan matching for outdoor 6D SLAM. In Advances in artificial intelligence. 28th annual German conference on AI, Koblenz, Germany (pp. 304–319).

  • Olson, C. (1999). Subpixel localization and uncertainty estimation using occupancy grids. In Proceedings of the IEEE international conference on robotics and automation (ICRA), Detroit, USA (pp. 1987–1992).

  • Olson, C. (2000). Probabilistic self-localization for mobile robots. IEEE Transactions on Robotics and Automation, 16(1), 55–66.

    Article  Google Scholar 

  • Pfaff, P., Triebel, R., & Burgard, W. (2007). An efficient extension to elevation maps for outdoor terrain mapping and loop closing. The International Journal of Robotics Research, 26(2), 217–230.

    Article  Google Scholar 

  • Rocha, R. (2005). Building volumetric maps with cooperative mobile robots and useful information sharing: a distributed control approach based on entropy. PhD thesis, Faculty of Engineering of University of Porto, Portugal.

  • Rocha, R., Dias, J., & Carvalho, A. (2005). Cooperative multi-robot systems: a study of vision-based 3-D mapping using information theory. Robotics and Autonomous Systems, 53, 282–311.

    Article  Google Scholar 

  • Rocha, R., Ferra, F., & Dias, J. (2008). Multi-robot complete exploration using hill climbing and topological recovery. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 1884–1889).

  • Ryde, J., & Hu, H. (2007). Mobile robot 3D perception and mapping with multi-resolution occupancy lists. In Proceedings of IEEE international conference on mechatronics and automation (ICMA 2007), Harbin, Heilongjiang, China.

  • Ryde, J., & Hu, H. (2008). 3D laser range scanner with hemispherical field of view for robot navigation. In Proceedings of IEEE/ASME advanced intelligent mechatronics international conference on mechatronics and automation (AIM 2008), Xi’an, China.

  • Stachniss, C., & Burgard, W. (2003a). Exploring unknown environments with mobile robots using coverage maps. In: Proceedings of the international conference on artificial intelligence (IJCAI), Acapulco, Mexico (pp. 1127–1132).

  • Stachniss, C., & Burgard, W. (2003b). Mapping and exploration with mobile robots using coverage maps. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS), Las Vegas, USA (Vol. 1, pp. 476–481).

  • Strand, M., Erb, F., & Dillmann, R. (2007). Range image registration using an octree based matching strategy. In Proceedings of IEEE international conference on mechatronics and automation (ICMA 2007), Harbin, Heilongjiang, China (pp. 1622–1627).

  • Thrun, S. (2001). A probabilistic online mapping algorithm for teams of mobile robots. International Journal of Robotics Research, 20(5), 335–363.

    Article  Google Scholar 

  • Thrun, S., & Montemerlo, M. (2006). The GraphSLAM algorithm with applications to large-scale mapping of urban structures. The International Journal of Robotics Research, 25(5/6), 403–430.

    Article  Google Scholar 

  • Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics. Cambridge: MIT Press.

    MATH  Google Scholar 

  • Triebel, R., Pfaff, P., & Burgard, W. (2006). Multi-level surface maps for outdoor terrain mapping and loop closing. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS). Beijing, China (pp. 2276–2282).

  • Vandorpe, J., van Brussel, H., & Xu, H. (1996). Exact dynamic map building for a mobile robot using geometrical primitives produced by a 2D range finder. In Proceedings of the IEEE international conference on robotics and automation (ICRA), Minneapolis, USA (pp. 901–908).

  • Victorino, A., Rives, P., & Borrelly, J. (2003). Safe navigation for indoor mobile robots. The International Journal of Robotics Research, 22(12), 1005–1039.

    Article  Google Scholar 

  • Wang, L., & Yong, L. M. A. (2002). Mobile robot localisation for indoor environment (SIMTech Technical Report).

  • Wang, Z., Huang, S., & Dissanayake, G. (2007). D-SLAM: A decoupled solution to simultaneous localization and mapping. The International Journal of Robotics Research, 26(2), 187–204.

    Article  Google Scholar 

  • Weingarten, J., Gruener, G., & Siegwart, R. (2004). A state-of-the-art 3D sensor for robot navigation. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS) (Vol. 3, pp. 2155–2160).

  • Wetzler, C., Weiss, G., & von Puttkamer, E. (1994). Keeping track of position and orientation of moving indoor systems by correlation of range-finder scans. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 595–601).

  • Wulf, O., Arras, K., Christensen, H., & Wagner, B. (2004). 2D mapping of cluttered indoor environments by means of 3D perception. In IEEE/RAS int. conf. on robotics and automation (ICRA), New Orleans, USA (pp. 4204–4209).

  • Yguel, M., Aycard, O., & Laugier, C. (2005). Wavelet occupancy grids: a method for compact map building. In Proceedings of the international conference on field and service robotics (FSR), Port Douglas, QLD, Australia (pp. 219–230).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Ryde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryde, J., Hu, H. 3D mapping with multi-resolution occupied voxel lists. Auton Robot 28, 169–185 (2010). https://doi.org/10.1007/s10514-009-9158-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-009-9158-3

Keywords

Navigation