Skip to main content

Advertisement

Log in

Inhibition of peptidyl–prolyl cis/trans isomerase Pin1 induces cell cycle arrest and apoptosis in vascular smooth muscle cells

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

This study was undertaken to determine the in vitro effect of lentivirus-mediated siPin1 on cell cycle and apoptosis of vascular smooth muscle cells (VSMCs). Further we sought to provide insight into the mechanisms behind these processes. Human umbilical artery smooth muscle cells (HUASMCs) were transfected with lentiviral siPin1. Real-time RT–PCR and Western blotting were used to examine Pin1 mRNA and protein expression. MTT and [3H]thymidine incorporation assays were employed to observe cell proliferation status. The apoptotic rate and cell cycle were analyzed by Hoechst33258 staining and flow cytometry. Finally we measured the expression of cyclin D1, β-catenin, CDK4, cytochrome c, procaspase-3, cleaved caspase-3, procaspase-9, cleaved caspase-9, Bcl-2, Bax, STAT3, phosphorylated STAT3 and VEGF in lentiviral siPin1 infected VSMCs. Lentivirus-mediated siPin1 effectively diminished endogenous Pin1 expression in VSMCs resulting in cell cycle arrest and enhancement of apoptosis. This was accompanied by downregulation of cyclin D1, β-catenin, CDK4, increase of Bax/Bcl-2 ratio, release of cytochrome c, and activation of caspase-3 and -9. We concluded that this effect was mediated, at least in part, via the β-catenin/cyclin D1/CDK4 cascade, and that the mitochondrial pathway was responsible for VSMC apoptosis in the absence of Pin1. Our observations raised the possibility that Pin1 might be a potential therapeutic target to prevent stenosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. McCarthy NJ, Bennett MR (2000) The regulation of vascular smooth muscle cell apoptosis. Cardiovasc Res 45:747–755. doi:10.1016/S0008-6363(99)00275-8

    Article  CAS  PubMed  Google Scholar 

  2. Ranganathan R, Lu KP, Hunter T, Noel JP (1997) Structural and functional analysis of the mitotic rotamase Pin1 suggests substrate recognition is phosphorylation dependent. Cell 89:875–886. doi:10.1016/S0092-8674(00)80273-1

    Article  CAS  PubMed  Google Scholar 

  3. Lu KP (2004) Pinning down cell signaling, cancer and Alzheimer’s disease. Trends Biochem Sci 29:200–209. doi:10.1016/j.tibs.2004.02.002

    Article  CAS  PubMed  Google Scholar 

  4. Lu KP (2003) Prolyl isomerase Pin1 as a molecular target for cancer diagnostics and therapeutics. Cancer Cell 4:175–180. doi:10.1016/S1535-6108(03)00218-6

    Article  CAS  PubMed  Google Scholar 

  5. Liou YC, Ryo A, Huang HK, Lu PJ, Bronson R, Fujimori F, Uchida T, Hunter T, Lu KP (2002) Loss of Pin1 function in the mouse causes phenotypes resembling cyclin D1-null phenotypes. Proc Natl Acad Sci USA 99:1335–1340. doi:10.1073/pnas.032404099

    Article  CAS  PubMed  Google Scholar 

  6. Wulf GM, Ryo A, Wulf GG, Lee SW, Niu T, Petkova V, Lu KP (2001) Pin1 is overexpressed in breast cancer and cooperates with Ras signaling in increasing the transcriptional activity of c-Jun towards cyclin D1. EMBO J 20:3459–3472. doi:10.1093/emboj/20.13.3459

    Article  CAS  PubMed  Google Scholar 

  7. Ryo A, Nakamura M, Wulf G, Liou YC, Lu KP (2001) Pin1 regulates turnover and subcellular localization of beta-catenin by inhibiting its interaction with APC. Nat Cell Biol 3:793–801. doi:10.1038/ncb0901-793

    Article  CAS  PubMed  Google Scholar 

  8. Ryo A, Suizu F, Yoshida Y, Perrem K, Liou YC, Wulf G, Rottapel R, Yamaoka S, Lu KP (2003) Regulation of NF-kappaB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA. Mol Cell 12:1413–1426. doi:10.1016/S10972765(03)00490-8

    Article  CAS  PubMed  Google Scholar 

  9. Lu KP, Hanes SD, Hunter T (1996) A human peptidyl–prolyl isomerase essential for regulation of mitosis. Nature 380:544–547. doi:10.1038/380544a0

    Article  CAS  PubMed  Google Scholar 

  10. Bennett MR (1999) Apoptosis of vascular smooth muscle cells in vascular remodelling and atherosclerotic plaque rupture. Cardiovasc Res 41:361–368. doi:10.1016/S0008-6363(98)00212-0

    Article  CAS  PubMed  Google Scholar 

  11. Fu Y, Zhang Z, Zhang G, Liu Y, Cao Y, Yu J, Hu J, Yin X (2008) Adenovirus-mediated gene transfer of tissue factor pathway inhibitor induces apoptosis in vascular smooth muscle cells. Apoptosis 13:634–640. doi:10.1007/s10495-008-0199-4

    Article  CAS  PubMed  Google Scholar 

  12. Owens LV, Xu L, Marston WA, Yang X, Farber MA, Iacocca MV, Cance WG, Keagy BA (2001) Overexpression of the focal adhesion kinase(p125FAK)in the vascular smooth muscle cells of intimal hyperplasia. J Vasc Surg 34:344–349. doi:10.1067/mva.2001.114814

    Article  CAS  PubMed  Google Scholar 

  13. Uglow EB, Slater S, Sala-Newby GB, Aguilera-Garcia CM, Angelini GD, Newby AC, George SJ (2003) Dismantling of cadherin-mediated cell–cell contacts modulates smooth muscle proliferation. Circ Res 92:1314–1321. doi:10.1161/01.RES.0000079027.44309.53

    Article  CAS  PubMed  Google Scholar 

  14. Slater SC, Koutsouki E, Jackson CL, Bush RC, Angelini GD, Newby AC, George SJ (2004) R-cadherin: β-catenin complex and its association with vascular smooth muscle cell proliferation. Arterioscler Thromb Vasc Biol 24:1204–1210. doi:10.1161/01.ATV.0000130464.24599.e0

    Article  CAS  PubMed  Google Scholar 

  15. Jones M, Sabatini PJ, Lee FS, Bendeck MP, Langille BL (2002) N-cadherin upregulation and function in response of smooth muscle cells to arterial injury. Arterioscler Thromb Vasc Biol 22:1972–1977. doi:10.1161/01.ATV.0000036416.14084.5A

    Article  CAS  PubMed  Google Scholar 

  16. Wang X, Xiao Y, Mou Y, Zhao Y, Blankesteijn M, Hall JL (2002) A role for the β-catenin/T-cell factor signaling cascade in vascular remodeling. Circ Res 90:340–347. doi:10.1161/hh0302.104466

    Article  CAS  PubMed  Google Scholar 

  17. Hou R, Liu S, Anees S, Hiroyasu S, Sibinga NES (2006) The Fat1 cadherin integrates vascular smooth muscle cell growth and migration signals. J Cell Biol 173:417–429. doi:10.1083/jcb.200508121

    Article  CAS  PubMed  Google Scholar 

  18. Quasnichka H, Slater SC, Beeching CA, Boehm M, Sala-Newby GB, George SJ (2006) Regulation of smooth muscle cell proliferation by β-catenin/T-cell factor signaling involves modulation of cyclin D1 and p21 expression. Circ Res 99:1329–1337. doi:10.1161/01.RES.0000253533.65446.33

    Article  CAS  PubMed  Google Scholar 

  19. Heo KS, Kim DU, Ryoo S, Nam M, Baek ST, Kim L, Park SK, Myung CS, Hoe KL (2007) PPARγ activation abolishes LDL-induced proliferation of human aortic smooth muscle cells via SOD-mediated down-regulation of superoxide. Biochem Biophys Res Commun 359:1017–1023. doi:10.1016/j.bbrc.2007.06.006

    Article  CAS  PubMed  Google Scholar 

  20. Lv L, Zhang J, Huang X, Zhao Y, Zhou Z, Zhang H (2008) Lentivirus-mediated RNA interference targeting STAT4 inhibits the proliferation of vascular smooth muscle cells. Arch Med Res 39:582–589. doi:10.1016/j.arcmed.2008.06.001

    Article  CAS  PubMed  Google Scholar 

  21. Rubinson DA, Dillon CP, Kwiatkowski AV, Sievers C, Yang L, Kopinja J, Rooney DL, Zhang M, Ihrig MM, McManus MT, Gertler FB, Scott ML, Van Parijs L (2003) A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 33:401–406. doi:10.1038/ng1117

    Article  CAS  PubMed  Google Scholar 

  22. Miyagishi M, Sumimoto H, Miyoshi H, Kawakami Y, Taira K (2004) Optimization of an siRNA-expression system with an improved hairpin and its significant suppressive effects in mammalian cells. J Gene Med 6:715–723. doi:10.1002/jgm.556

    Article  CAS  PubMed  Google Scholar 

  23. Labarca C, Paigen K (1980) A simple, rapid, and sensitive DNA assay procedure. Anal Biochem 102:344–352

    Article  CAS  PubMed  Google Scholar 

  24. Lu KP, Finn G, Lee TH, Nicholson LK (2007) Prolyl cistrans isomerization as a molecular timer. Nat Chem Biol 3:619–629. doi:10.1038/nchembio.2007.35

    Article  CAS  PubMed  Google Scholar 

  25. Yu Q, Geng Y, Sicinski P (2001) Specific protection against breast cancers by cyclin D1 ablation. Nature 411:1017–1021. doi:10.1038/35082500

    Article  CAS  PubMed  Google Scholar 

  26. Ryo A, Liou YC, Lu KP, Wulf G (2003) Prolyl isomerase Pin1: a catalyst for oncogenesis and a potential therapeutic target in cancer. J Cell Sci 116:773–783. doi:10.1242/jcs.00276

    Article  CAS  PubMed  Google Scholar 

  27. Pollman MJ, Hall JL, Mann MJ, Zhang LN, Gibbons GH (1998) Inhibition of neointimal cell bcl-x expression induces apoptosis and regression of vascular disease. Nat Med 4:222–227

    Article  CAS  PubMed  Google Scholar 

  28. Pollman MJ, Hall JL, Gibbons GH (1999) Determinants of vascular smooth muscle cell apoptosis after balloon angioplasty injury—influence of redox state and cell phenotype. Circ Res 84:113–121

    CAS  PubMed  Google Scholar 

  29. Sata M, Perlman H, Muruve DA, Silver M, Ikebe M, Libermann TA, Oettgen P, Walsh K (1998) Fas ligand gene transfer to the vessel wall inhibits neointima formation and overrides the adenovirus-mediated T cell response. Proc Natl Acad Sci USA 95:1213–1217

    Article  CAS  PubMed  Google Scholar 

  30. Wang X, Adhikari N, Li Q, Hall JL (2004) LDL receptor-related protein LRP6 regulates proliferation and survival through the Wnt cascade in vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 287:H2376–H2383. doi:10.1152/ajpheart.01173.2003

    Article  CAS  PubMed  Google Scholar 

  31. Tsai JC, Perrella MA, Yoshizumi M, Hsieh CM, Haber E, Schlegel R, Lee M (1994) Promotion of vascular smooth muscle cell growth by homocysteine: a link to atherosclerosis. Proc Natl Acad Sci USA 91:6369–6373

    Article  CAS  PubMed  Google Scholar 

  32. Zhao D, Letterman J, Schreiber BM (2001) Beta-migrating very low density lipoprotein (beta VLDL) activates smooth muscle cell mitogen-activated protein (MAP) kinase via G protein-coupled receptor-mediated transactivation of the epidermal growth factor (EGF) receptor: effect of MAP kinase activation on beta VLDL plus EGF-induced cell proliferation. J Biol Chem 276:30579–30588. doi:10.1074/jbc.M103761200

    Article  CAS  PubMed  Google Scholar 

  33. Ruef J, Meshel AS, Hu Z, Horaist C, Ballinger CA, Thompson LJ, Subbarao VD, Dumont JA, Patterson C (1999) Flavopiridol inhibits smooth muscle cell proliferation in vitro and neointimal formation in vivo after carotid injury in the rat. Circulation 100:659–665

    CAS  PubMed  Google Scholar 

  34. Hashemolhosseini S, Nagamine Y, Morley SJ, Desrivieres S, Mercep L, Ferrari S (1998) Rapamycin inhibition of the G1 to S transition is mediated by effects on cyclin D1 mRNA and protein stability. J Biol Chem 273:14424–14429

    Article  CAS  PubMed  Google Scholar 

  35. Tanabe K, Degertekin M, Regar E, Ligthart J, van der Giessen W, Serruys P (2002) No delayed restenosis at 18 months after implantation of sirolimus-eluting stent. Catheter Cardiovasc Interv 57:69–71. doi:10.1002/ccd.10266

    Article  Google Scholar 

  36. Lamb J, Ramaswamy S, Ford HL, Contreras B, Martinez RV, Kittrell FS, Zahnow CA, Patterson N, Golub TR, Ewen ME (2003) A mechanism of cyclin D1 action encoded in the patterns of gene expression in human cancer. Cell 114:323–334. doi:10.1016/S0092-8674(03)00570-1

    Article  CAS  PubMed  Google Scholar 

  37. Gao M, Labuda T, Xia Y, Gallagher E, Fang D, Liu YC, Karin M (2004) Jun turnover is controlled through JNK dependent phosphorylation of the E3 ligase Itch. Science 306:271–275

    Article  CAS  PubMed  Google Scholar 

  38. Moon RT, Bowerman B, Boutros M, Perrimon N (2002) The promise and perils of Wnt signaling through β-catenin. Science 296:1644–1646

    Article  CAS  PubMed  Google Scholar 

  39. Karin M, Cao Y, Greten FR, Li ZW (2002) NF-κB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2:301–310. doi:10.1038/nrc780

    Article  CAS  PubMed  Google Scholar 

  40. Barker N, van den Born M (2008) Detection of beta-catenin localization by immunohistochemistry. Methods Mol Biol 468:91–98. doi:10.1007/978-1-59745-249-6

    Article  CAS  PubMed  Google Scholar 

  41. Yu Q, Sicinska E, Geng Y, Ahnström M, Zagozdzon A, Kong Y, Gardner H, Kiyokawa H, Harris LN, Stål O, Sicinski P (2006) Requirement for CDK4 kinase function in breast cancer. Cancer Cell 9:23–32. doi:10.1016/j.ccr.2005.12.012

    Article  CAS  PubMed  Google Scholar 

  42. Ely S, Di Liberto M, Niesvizky R, Baughn LB, Cho HJ, Hatada EN, Knowles DM, Lane J, Chen-Kiang S (2005) Mutually exclusive cyclin-dependent kinase 4/cyclin D1 and cyclin-dependent kinase 6/cyclin D2 pairing inactivates retinoblastoma protein and promotes cell cycle dysregulation in multiple myeloma. Cancer Res 65:11345–11353. doi:10.1158/0008-5472.CAN-05-2159

    Article  CAS  PubMed  Google Scholar 

  43. Dong K, Wang R, Wang X, Lin F, Shen JJ, Gao P, Zhang HZ (2008) Tumor-specific RNAi targeting eIF4E supprestumor growth, induces apoptosis and enhances cisplatin cytotoxicity in human breast carcinoma cells. Breast Cancer Res Treat 113:443–456. doi:10.1007/s10549-008-9956-x

    Article  PubMed  Google Scholar 

  44. Hsu YL, Yen MH, Kuo PL, Cho CY, Huang YT, Tseng CJ, Lee JP, Lin CC (2006) San-Zhong-Kui-Jian-Tang, a traditional Chinese medicine prescription, inhibits the proliferation of human breast cancer cell by blocking cell cycle progression and inducing apoptosis. Biol Pharm Bull 29:2388–2394. doi:10.1248/bpb.29.2388

    Article  CAS  PubMed  Google Scholar 

  45. Kannan K, Jain SK (2000) Oxidative stress and apoptosis. Pathophysiology 7:153–163. doi:10.1016/S0928-4680(00)00053-5

    Article  CAS  PubMed  Google Scholar 

  46. Savill J, Fadok V, Henson P, Haslett C (1993) Phagocytic recognition of cells undergoing apoptosis. Immunol Today 3:131–136

    Article  Google Scholar 

  47. Orrenius S (2004) Mitochondrial regulation of apoptotic cell death. Toxicol Lett 149:19–23

    Article  CAS  PubMed  Google Scholar 

  48. Liu B, Ren Z, Shi Y, Guan C, Pan Z, Zong Z (2008) Activation of signal transducers and activators of transcription 3 and overexpression of its target gene cyclinD1 in laryngeal carcinomas. Laryngoscope 118:1976–1980. doi:10.1097/MLG.0b013e31817fd3fa

    Article  CAS  PubMed  Google Scholar 

  49. Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C, Darnell JE Jr (1999) STAT3 as an oncogene. Cell 98:295–303. doi:10.1016/S0092-8674(00)81959-5

    Article  CAS  PubMed  Google Scholar 

  50. Niu G, Wright KL, Huang M, Song L, Haura E, Turkson J, Zhang S, Wang T, Sinibaldi D, Coppola D, Heller R, Ellis LM, Karras J, Bromberg J, Pardoll D, Jove R, Yu H (2002) Constitutive STAT3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene 21:2000–2008. doi:10.1038/sj/onc/1205260

    Article  CAS  PubMed  Google Scholar 

  51. Kim MR, Choi HS, Heo TH, Hwang SW, Kang KW (2008) Induction of vascular endothelial growth factor by peptidyl–prolyl isomerase Pin1 in breast cancer cells. Biochem Biophys Res Commun 369:547–553. doi:10.1016/j.bbrc.2008.02.045

    Article  CAS  PubMed  Google Scholar 

  52. Takahashi K, Uchida C, Shin RW, Shimazaki K, Uchida T (2008) Prolylisomerase, Pin1: new findings of post-translational modifications and physiological substrates in cancer, asthma and Alzheimer’s disease. Cell Mol Life Sci 65:359–375. doi:10.1007/s00018-007-7270-0

    Article  CAS  PubMed  Google Scholar 

  53. Darnell JE Jr (1997) STATs and gene regulation. Science 277:1630–1635

    Article  CAS  PubMed  Google Scholar 

  54. Chen Z, Lee FY, Bhalla KN, Wu J (2006) Potent inhibition of platelet-derived growth factor-induced responses in vascular smooth muscle cells by BMS-354825 (dasatinib). Mol Pharmacol 69:1527–1533. doi:10.1124/mol.105.020172

    Article  CAS  PubMed  Google Scholar 

  55. Li L, Blumenthal DK, Masaki T, Terry CM, Cheung AK (2006) Differential effects of imatinib on PDGF-induced proliferation and PDGF receptor signaling in human arterial and venous smooth muscle cells. J Cell Biochem 99:1553–1563. doi:10.1002/jcb.20993

    Article  CAS  PubMed  Google Scholar 

  56. Ishida A, Murray J, Saito Y, Kanthou C, Benzakour O, Shibuya M, Wijelath ES (2001) Expression of vascular endothelial growth factor receptors in smooth muscle cells. J Cell Physiol 188:359–368. doi:10.1002/jcp.1121

    Article  CAS  PubMed  Google Scholar 

  57. Grosskreutz C, Anand-Apte B, Dupláa C, Quinn T, Terman BI, Zetter B, D’Amore PA (1999) Vascular endothelial growth factor-induced migration of vascular smooth muscle cells in vitro. Microvasc Res 58:128–136. doi:10.1006/mvre.1999.2171

    Article  CAS  PubMed  Google Scholar 

  58. Dorafshar AH, Angle N, Bryer-Ash M, Huang D, Farooq MM, Gelabert HA, Freischlag JA (2003) Vascular endothelial growth factor inhibits mitogen-induced vascular smooth muscle cell proliferation. J Surg Res 114:179–186. doi:10.1016/S0022-4804(03)00254-3

    Article  CAS  PubMed  Google Scholar 

  59. Taichman NS, Young S, Cruchley AT, Taylor P, Paleolog E (1997) Human neutrophils secrete vascular endothelial growth factor. J Leuk Biol 62:397–400

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the research program of Shanghai Renji Hospital. Special thanks go to the staff obstetricians of the department of obstetrics and gynecology at Shanghai Renji Hospital for providing the umbilical cords. We wish to thank Dennis Cho, Jay Wang and Susana Huang (The Schulich School of Medicine & Dentistry, University of Western Ontario) for their assistance in proofreading this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaoxiong Zhou or Jiwei Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lv, L., Zhou, Z., Huang, X. et al. Inhibition of peptidyl–prolyl cis/trans isomerase Pin1 induces cell cycle arrest and apoptosis in vascular smooth muscle cells. Apoptosis 15, 41–54 (2010). https://doi.org/10.1007/s10495-009-0409-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-009-0409-8

Keywords

Navigation