Skip to main content
Log in

Mitochondria mediated cell death in diabetes

  • Diabetes and Apoptosis
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Mitochondrial dysfunction plays a role in the pathogenesis of a wide range of diseases that involve disordered cellular fuel metabolism and survival/death pathways, including neurodegenerative diseases, cancer and diabetes. Cytokine, virus recognition and cellular stress pathways converging on mitochondria cause apoptotic and/or necrotic cell death of β-cells in type-1 diabetes. Moreover, since mitochondria generate crucial metabolic signals for glucose stimulated insulin secretion (GSIS), mitochondrial dysfunction underlies both the functional derangement of GSIS and (over-nutrition) stress-induced apoptotic/necrotic β-cell death, hallmarks of type-2 diabetes. The apparently distinct mechanisms governing β-cell life/death decisions during the development of diabetes provide a remarkable example where remote metabolic, immune and stress signalling meet with mitochondria mediated apoptotic/necrotic death pathways to determine the fate of the β-cell. We summarize the main findings supporting such a pivotal role of mitochondria in β-cell death in the context of current trends in diabetes research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AMPK:

AMP-activated protein kinase

AIF:

Apoptosis inducing factor

ATF3:

Activating transcription factor 3

ATF4:

Activating transcription factor 4

[Ca2+]c :

Cytoplasmic [Ca2+]

[Ca2+]er :

ER luminal [Ca2+]

CHOP:

C/EBP homologous protein

CIC:

Citrate/isocitrate carrier

DAGs:

Diacylglycerols

eIF-2α:

Eukaryotic initiation factor 2 α-subunit

ER:

Endoplasmic reticulum

ERAD:

ER associated degradation

ERRα:

Estrogen related receptor

ETC:

Electron transport chain

GDH:

Glutamate dehydrogenase

GK:

Glucokinase

GSIS:

Glucose stimulated insulin secretion

GSK3:

Glycogen synthase kinase

HK:

Hexokinase

IAPP:

Islet amyloid polypeptide

ICDc:

Cytosolic NADP-dependent isoform of isocitrate dehydrogenase

iNOS:

Inducible nitric oxide synthase

IP3R:

Inositol 1,4,5 trisphosphate receptor

KATP channel:

ATP-sensitive K+ channel

MAM:

Mitochondria associated membrane fraction

MetS:

Metabolic syndrome

Miro:

Mitochondrial Rho GTPase

MPT:

Mitochondrial permeability transition

NF-κB:

Nuclear factor κB

NLRX:

Nucleotide-binding domain and leucine-rich-repeat-containing X protein

NO:

Nitric oxide

NOD:

Non-obese diabetic mouse model

NRF-1 and 2:

Nuclear respiratory factors

OMM:

Outer mitochondrial membrane

OMP:

Outer mitochondrial membrane permeabilization

OXPHOS:

Oxidative phosphorylation

PARP:

Poly(ADP-ribose) polymerase

PC:

Pyruvate carboxylase

PDH:

Pyruvate dehydrogenase

PDK-1:

PDH inhibitor kinase

PERK:

dsRNA-activated protein kinase (PKR)-like ER kinase

PGC-1α:

PPAR-γ co-activator-1α

REDD:

Regulated in development and DNA damage responses

RIG-I:

Retinoic acid inducible gene-I

ROS:

Reactive oxygen species

RyR:

Ryanodine receptor

S1T:

Truncated SERCA1 isoform

SERCAs:

ER/sarcoplasmic reticulum Ca2+ ATPases

STAT-1:

Signal transducer and activator of transcription 1

STING:

Stimulator of interferon genes

T1DM:

Type-1 diabetes

T2DM:

Type-2 diabetes

TGs:

Triglycerides

UPR:

Unfolded protein response

α-KG:

α-Ketoglutarate

References

  1. Mathis D, Vence L, Benoist C (2001) [beta]-Cell death during progression to diabetes. Nature 414:792–798. doi:10.1038/414792a

    PubMed  CAS  Google Scholar 

  2. Lee SC, Pervaiz S (2007) Apoptosis in the pathophysiology of Diabetes mellitus. Int J Biochem Cell Biol 39:497–504. doi:10.1016/j.biocel.2006.09.007

    PubMed  CAS  Google Scholar 

  3. Muoio DM, Newgard CB (2008) Mechanisms of disease: molecular and metabolic mechanisms of insulin resistance and beta-cell failure in type 2 diabetes. Nat Rev Mol Cell Biol 9:193–205. doi:10.1038/nrm2327

    PubMed  CAS  Google Scholar 

  4. Kasuga M (2006) Insulin resistance and pancreatic beta cell failure. J Clin Invest 116:1756–1760. doi:10.1172/JCI29189

    PubMed  CAS  Google Scholar 

  5. Cnop M, Welsh N, Jonas JC, Jorns A, Lenzen S, Eizirik DL (2005) Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes 54(Suppl 2):97–9107. doi:10.2337/diabetes.54.suppl_2.S97

    Google Scholar 

  6. Prentki M, Nolan CJ (2006) Islet beta cell failure in type 2 diabetes. J Clin Invest 116:1802–1812. doi:10.1172/JCI29103

    PubMed  CAS  Google Scholar 

  7. Kim I, Xu W, Reed JC (2008) Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 7:1013–1030. doi:10.1038/nrd2755

    PubMed  CAS  Google Scholar 

  8. Ma Y, Hendershot LM (2004) The role of the unfolded protein response in tumour development: friend or foe? Nat Rev Cancer 4:966–977. doi:10.1038/nrc1505

    PubMed  CAS  Google Scholar 

  9. Lindholm D, Wootz H, Korhonen L (2006) ER stress and neurodegenerative diseases. Cell Death Differ 13:385–392. doi:10.1038/sj.cdd.4401778

    PubMed  CAS  Google Scholar 

  10. Zhao L, Ackerman SL (2006) Endoplasmic reticulum stress in health and disease. Curr Opin Cell Biol 18:444–452. doi:10.1016/j.ceb.2006.06.005

    PubMed  CAS  Google Scholar 

  11. Wiederkehr A, Wollheim CB (2006) Minireview: implication of mitochondria in insulin secretion and action. Endocrinology 147:2643–2649. doi:10.1210/en.2006-0057

    PubMed  CAS  Google Scholar 

  12. Maechler P, Carobbio S, Rubi B (2006) In beta-cells, mitochondria integrate and generate metabolic signals controlling insulin secretion. Int J Biochem Cell Biol 38:696–709. doi:10.1016/j.biocel.2005.12.006

    PubMed  CAS  Google Scholar 

  13. Maechler P, Wollheim CB (2000) Mitochondrial signals in glucose-stimulated insulin secretion in the beta cell. J Physiol 529(Pt 1):49–56. doi:10.1111/j.1469-7793.2000.00049.x

    PubMed  CAS  Google Scholar 

  14. Henquin JC, Ravier MA, Nenquin M, Jonas JC, Gilon P (2003) Hierarchy of the beta-cell signals controlling insulin secretion. Eur J Clin Invest 33:742–750. doi:10.1046/j.1365-2362.2003.01207.x

    PubMed  CAS  Google Scholar 

  15. Newgard CB, McGarry JD (1995) Metabolic coupling factors in pancreatic beta-cell signal transduction. Annu Rev Biochem 64:689–719. doi:10.1146/annurev.bi.64.070195.003353

    PubMed  CAS  Google Scholar 

  16. Bender K, Newsholme P, Brennan L, Maechler P (2006) The importance of redox shuttles to pancreatic beta-cell energy metabolism and function. Biochem Soc Trans 34:811–814. doi:10.1042/BST0340811

    PubMed  CAS  Google Scholar 

  17. Pitter JG, Maechler P, Wollheim CB, Spat A (2002) Mitochondria respond to Ca2+ already in the submicromolar range: correlation with redox state. Cell Calcium 31:97–104. doi:10.1054/ceca.2001.0264

    PubMed  CAS  Google Scholar 

  18. Maechler P, Kennedy ED, Wang H, Wollheim CB (1998) Desensitization of mitochondrial Ca2+ and insulin secretion responses in the beta cell. J Biol Chem 273:20770–20778. doi:10.1074/jbc.273.33.20770

    PubMed  CAS  Google Scholar 

  19. Duchen MR, Smith PA, Ashcroft FM (1993) Substrate-dependent changes in mitochondrial function, intracellular free calcium concentration and membrane channels in pancreatic beta-cells. Biochem J 294(Pt 1):35–42

    PubMed  CAS  Google Scholar 

  20. Wiederkehr A, Wollheim CB (2008) Impact of mitochondrial calcium on the coupling of metabolism to insulin secretion in the pancreatic beta-cell. Cell Calcium 44:64–76. doi:10.1016/j.ceca.2007.11.004

    PubMed  CAS  Google Scholar 

  21. Ohara-Imaizumi M, Fujiwara T, Nakamichi Y, Okamura T, Akimoto Y, Kawai J, Matsushima S, Kawakami H, Watanabe T, Akagawa K, Nagamatsu S (2007) Imaging analysis reveals mechanistic differences between first- and second-phase insulin exocytosis. J Cell Biol 177:695–705. doi:10.1083/jcb.200608132

    PubMed  CAS  Google Scholar 

  22. Ravier MA, Nenquin M, Miki T, Seino S, Henquin JC (2009) Glucose controls cytosolic Ca2+ and insulin secretion in mouse islets lacking adenosine triphosphate-sensitive K+ channels owing to a knockout of the pore-forming subunit Kir6.2. Endocrinology 150:33–45. doi:10.1210/en.2008-0617

    PubMed  CAS  Google Scholar 

  23. Masgrau R, Churchill GC, Morgan AJ, Ashcroft SJH, Galione A (2003) NAADP: a new second messenger for glucose-induced Ca2+ responses in clonal pancreatic beta cells. Curr Biol 13:247–251. doi:10.1016/S0960-9822(03)00041-1

    PubMed  CAS  Google Scholar 

  24. Patel S (2003) NAADP on the up in pancreatic beta cells-a sweet message? Bioessays 25:430–433. doi:10.1002/bies.10276

    PubMed  CAS  Google Scholar 

  25. Mitchell KJ, Lai FA, Rutter GA (2003) Ryanodine receptor type I and nicotinic acid adenine dinucleotide phosphate receptors mediate Ca2+ release from insulin-containing vesicles in living pancreatic beta-cells (MIN6). J Biol Chem 278:11057–11064. doi:10.1074/jbc.M210257200

    PubMed  CAS  Google Scholar 

  26. Szaszak M, Christian F, Rosenthal W, Klussmann E (2008) Compartmentalized cAMP signalling in regulated exocytic processes in non-neuronal cells. Cell Signal 20:590–601. doi:10.1016/j.cellsig.2007.10.020

    PubMed  CAS  Google Scholar 

  27. MacDonald MJ, Fahien LA, Brown LJ, Hasan NM, Buss JD, Kendrick MA (2005) Perspective: emerging evidence for signaling roles of mitochondrial anaplerotic products in insulin secretion. Am J Physiol Endocrinol Metab 288:1–15. doi:10.1152/ajpendo.00218.2004

    Google Scholar 

  28. Rocheleau JV, Head WS, Piston DW (2004) Quantitative NAD(P)H/flavoprotein autofluorescence imaging reveals metabolic mechanisms of pancreatic islet pyruvate response. J Biol Chem 279:31780–31787. doi:10.1074/jbc.M314005200

    PubMed  CAS  Google Scholar 

  29. Freeman H, Shimomura K, Horner E, Cox RD, Ashcroft FM (2006) Nicotinamide nucleotide transhydrogenase: a key role in insulin secretion. Cell Metab 3:35–45. doi:10.1016/j.cmet.2005.10.008

    PubMed  CAS  Google Scholar 

  30. Ivarsson R, Quintens R, Dejonghe S, Tsukamoto K, In ‘t Veld P, Renstrom E, Schuit FC (2005) Redox control of exocytosis: regulatory role of NADPH, thioredoxin, and glutaredoxin. Diabetes 54:2132–2142

    PubMed  CAS  Google Scholar 

  31. Rabaglia ME, Gray-Keller MP, Frey BL, Shortreed MR, Smith LM, Attie AD (2005) Alpha-Ketoisocaproate-induced hypersecretion of insulin by islets from diabetes-susceptible mice. Am J Physiol Endocrinol Metab 289:218–224. doi:10.1152/ajpendo.00573.2004

    Google Scholar 

  32. Maechler P, Wollheim CB (1999) Mitochondrial glutamate acts as a messenger in glucose-induced insulin exocytosis. Nature 402:685–689. doi:10.1038/45280

    PubMed  CAS  Google Scholar 

  33. Hoy M, Maechler P, Efanov AM, Wollheim CB, Berggren PO, Gromada J (2002) Increase in cellular glutamate levels stimulates exocytosis in pancreatic beta-cells. FEBS Lett 531:199–203. doi:10.1016/S0014-5793(02)03500-7

    PubMed  CAS  Google Scholar 

  34. Joseph JW, Jensen MV, Ilkayeva O, Palmieri F, Alarcon C, Rhodes CJ, Newgard CB (2006) The mitochondrial citrate/isocitrate carrier plays a regulatory role in glucose-stimulated insulin secretion. J Biol Chem 281:35624–35632. doi:10.1074/jbc.M602606200

    PubMed  CAS  Google Scholar 

  35. Ronnebaum SM, Ilkayeva O, Burgess SC, Joseph JW, Lu D, Stevens RD, Becker TC, Sherry AD, Newgard CB, Jensen MV (2006) A pyruvate cycling pathway involving cytosolic NADP-dependent isocitrate dehydrogenase regulates glucose-stimulated insulin secretion. J Biol Chem 281:30593–30602. doi:10.1074/jbc.M511908200

    PubMed  CAS  Google Scholar 

  36. Carobbio S, Frigerio F, Rubi B, Vetterli L, Bloksgaard M, Gjinovci A, Pournourmohammadi S, Herrera PL, Reith W, Mandrup S, Maechler P (2009) Deletion of glutamate dehydrogenase in beta-cells abolishes part of the insulin secretory response not required for glucose homeostasis. J Biol Chem 284:921–929. doi:10.1074/jbc.M806295200

    PubMed  CAS  Google Scholar 

  37. Hasan NM, Longacre MJ, Stoker SW, Boonsaen T, Jitrapakdee S, Kendrick MA, Wallace JC, MacDonald MJ (2008) Impaired anaplerosis and insulin secretion in insulinoma cells caused by small interfering RNA-mediated suppression of pyruvate carboxylase. J Biol Chem 283:28048–28059. doi:10.1074/jbc.M804170200

    PubMed  CAS  Google Scholar 

  38. Srikanta S, Ganda OP, Jackson RA, Gleason RE, Kaldany A, Garovoy MR, Milford EL, Carpenter CB, Soeldner JS, Eisenbarth GS (1983) Type I Diabetes mellitus in monozygotic twins: chronic progressive beta cell dysfunction. Ann Intern Med 99:320–326

    PubMed  CAS  Google Scholar 

  39. Eizirik DL, Moore F, Flamez D, Ortis F (2008) Use of a systems biology approach to understand pancreatic beta-cell death in Type 1 diabetes. Biochem Soc Trans 36:321–327. doi:10.1042/BST0360321

    PubMed  CAS  Google Scholar 

  40. Bach JF, Mathis D (1997) The NOD mouse. Res Immunol 148:285–286. doi:10.1016/S0923-2494(97)87235-5

    PubMed  CAS  Google Scholar 

  41. Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El Deiry WS, Golstein P, Green DR, Hengartner M, Knight RA, Kumar S, Lipton SA, Malorni W, Nunez G, Peter ME, Tschopp J, Yuan J, Piacentini M, Zhivotovsky B, Melino G (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16:3–11. doi:10.1038/cdd.2008.150

    PubMed  CAS  Google Scholar 

  42. Ben Sasson SA, Sherman Y, Gavrieli Y (1995) Identification of dying cells—in situ staining. Methods Cell Biol 46:29–39. doi:10.1016/S0091-679X(08)61922-6

    PubMed  CAS  Google Scholar 

  43. Kurrer MO, Pakala SV, Hanson HL, Katz JD (1997) Beta cell apoptosis in T cell-mediated autoimmune diabetes. Proc Natl Acad Sci USA 94:213–218. doi:10.1073/pnas.94.1.213

    PubMed  CAS  Google Scholar 

  44. Augstein P, Stephens LA, Allison J, Elefanty AG, Ekberg M, Kay TW, Harrison LC (1998) Beta-cell apoptosis in an accelerated model of autoimmune diabetes. Mol Med 4:495–501

    PubMed  CAS  Google Scholar 

  45. Delaney CA, Pavlovic D, Hoorens A, Pipeleers DG, Eizirik DL (1997) Cytokines induce deoxyribonucleic acid strand breaks and apoptosis in human pancreatic islet cells. Endocrinology 138:2610–2614. doi:10.1210/en.138.6.2610

    PubMed  CAS  Google Scholar 

  46. Stassi G, De Maria R, Trucco G, Rudert W, Testi R, Galluzzo A, Giordano C, Trucco M (1997) Nitric oxide primes pancreatic beta cells for Fas-mediated destruction in insulin-dependent Diabetes mellitus. J Exp Med 186:1193–1200. doi:10.1084/jem.186.8.1193

    PubMed  CAS  Google Scholar 

  47. Eizirik DL, Mandrup-Poulsen T (2001) A choice of death–the signal-transduction of immune-mediated beta-cell apoptosis. Diabetologia 44:2115–2133. doi:10.1007/s001250100021

    PubMed  CAS  Google Scholar 

  48. Eizirik DL, Darville MI (2001) Beta-cell apoptosis and defense mechanisms: lessons from type 1 diabetes. Diabetes 50(Suppl 1):64–69. doi:10.2337/diabetes.50.2007.S64

    Google Scholar 

  49. Collier JJ, Fueger PT, Hohmeier HE, Newgard CB (2006) Pro- and antiapoptotic proteins regulate apoptosis but do not protect against cytokine-mediated cytotoxicity in rat islets and {beta}-cell lines. Diabetes 55:1398–1406. doi:10.2337/db05-1000

    PubMed  CAS  Google Scholar 

  50. Saldeen J (2000) Cytokines induce both necrosis and apoptosis via a common Bcl-2-inhibitable pathway in rat insulin-producing cells. Endocrinology 141:2003–2010. doi:10.1210/en.141.6.2003

    PubMed  CAS  Google Scholar 

  51. Pearl-Yafe M, Kaminitz A, Yolcu ES, Yaniv I, Stein J, Askenasy N (2007) Pancreatic islets under attack: cellular and molecular effectors. Curr Pharm Des 13:749–760. doi:10.2174/138161207780249155

    PubMed  CAS  Google Scholar 

  52. Ohara-Imaizumi M, Cardozo AK, Kikuta T, Eizirik DL, Nagamatsu S (2004) The cytokine interleukin-1beta reduces the docking and fusion of insulin granules in pancreatic beta-cells, preferentially decreasing the first phase of exocytosis. J Biol Chem 279:41271–41274. doi:10.1074/jbc.C400360200

    PubMed  CAS  Google Scholar 

  53. Wachlin G, Augstein P, Schroder D, Kuttler B, Kloting I, Heinke P, Schmidt S (2003) IL-1beta, IFN-gamma and TNF-alpha increase vulnerability of pancreatic beta cells to autoimmune destruction. J Autoimmun 20:303–312. doi:10.1016/S0896-8411(03)00039-8

    PubMed  CAS  Google Scholar 

  54. Perkins ND (2007) Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol 8:49–62. doi:10.1038/nrm2083

    PubMed  CAS  Google Scholar 

  55. Cardozo AK, Ortis F, Storling J, Feng YM, Rasschaert J, Tonnesen M, Van Eylen F, Mandrup-Poulsen T, Herchuelz A, Eizirik DL (2005) Cytokines downregulate the sarcoendoplasmic reticulum pump Ca2+ ATPase 2b and deplete endoplasmic reticulum Ca2+, leading to induction of endoplasmic reticulum stress in pancreatic beta-cells. Diabetes 54:452–461. doi:10.2337/diabetes.54.2.452

    PubMed  CAS  Google Scholar 

  56. Chami M, Oules B, Szabadkai G, Tacine R, Rizzuto R, Paterlini-Brechot P (2008) Role of SERCA1 truncated isoform in the proapoptotic calcium transfer from ER to mitochondria during ER stress. Mol Cell 32:641–651. doi:10.1016/j.molcel.2008.11.014

    PubMed  CAS  Google Scholar 

  57. White C, Li C, Yang J, Petrenko NB, Madesh M, Thompson CB, Foskett JK (2005) The endoplasmic reticulum gateway to apoptosis by Bcl-X(L) modulation of the InsP3R. Nat Cell Biol 7:1021–1028. doi:10.1038/ncb1302

    PubMed  CAS  Google Scholar 

  58. Szabadkai G, Rizzuto R (2004) Participation of endoplasmic reticulum and mitochondrial calcium handling in apoptosis: more than just neighborhood? FEBS Lett 567:111–115. doi:10.1016/j.febslet.2004.04.059

    PubMed  CAS  Google Scholar 

  59. Tisch R, McDevitt H (1996) Insulin-dependent Diabetes mellitus. Cell 85:291–297. doi:10.1016/S0092-8674(00)81106-X

    PubMed  CAS  Google Scholar 

  60. McKenzie MD, Carrington EM, Kaufmann T, Strasser A, Huang DCS, Kay TWH, Allison J, Thomas HE (2008) Proapoptotic BH3-only protein Bid is essential for death receptor-induced apoptosis of pancreatic beta-cells. Diabetes 57:1284–1292. doi:10.2337/db07-1692

    PubMed  CAS  Google Scholar 

  61. Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501. doi:10.1016/S0092-8674(00)81590-1

    PubMed  CAS  Google Scholar 

  62. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X (1998) Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94:481–490. doi:10.1016/S0092-8674(00)81589-5

    PubMed  CAS  Google Scholar 

  63. Estella E, McKenzie MD, Catterall T, Sutton VR, Bird PI, Trapani JA, Kay TW, Thomas HE (2006) Granzyme B-mediated death of pancreatic beta-cells requires the proapoptotic BH3-only molecule bid. Diabetes 55:2212–2219. doi:10.2337/db06-0129

    PubMed  CAS  Google Scholar 

  64. Heitmeier MR, Scarim AL, Corbett JA (1999) Prolonged STAT1 activation is associated with interferon-gamma priming for interleukin-1-induced inducible nitric-oxide synthase expression by islets of Langerhans. J Biol Chem 274:29266–29273. doi:10.1074/jbc.274.41.29266

    PubMed  CAS  Google Scholar 

  65. Corbett JA, Wang JL, Sweetland MA, Lancaster JR, McDaniel ML (1992) Interleukin 1 beta induces the formation of nitric oxide by beta-cells purified from rodent islets of Langerhans. Evidence for the beta-cell as a source and site of action of nitric oxide. J Clin Invest 90:2384–2391. doi:10.1172/JCI116129

    PubMed  CAS  Google Scholar 

  66. Irawaty W, Kay TWH, Thomas HE (2002) Transmembrane TNF and IFNgamma induce caspase-independent death of primary mouse pancreatic beta cells. Autoimmunity 35:369–375. doi:10.1080/0891693021000024834

    PubMed  CAS  Google Scholar 

  67. Riboulet-Chavey A, Diraison F, Siew LK, Wong FS, Rutter GA (2008) Inhibition of AMP-activated protein kinase protects pancreatic {beta}-cells from cytokine-mediated apoptosis and CD8+ T-cell-induced cytotoxicity. Diabetes 57:415–423. doi:10.2337/db07-0993

    PubMed  CAS  Google Scholar 

  68. Kefas BA, Cai Y, Ling Z, Heimberg H, Hue L, Pipeleers D, Van de Casteele M (2003) AMP-activated protein kinase can induce apoptosis of insulin-producing MIN6 cells through stimulation of c-Jun-N-terminal kinase. J Mol Endocrinol 30:151–161. doi:10.1677/jme.0.0300151

    PubMed  CAS  Google Scholar 

  69. Meisse D, Van de Casteele M, Beauloye C, Hainault I, Kefas BA, Rider MH, Foufelle F, Hue L (2002) Sustained activation of AMP-activated protein kinase induces c-Jun N-terminal kinase activation and apoptosis in liver cells. FEBS Lett 526:38–42. doi:10.1016/S0014-5793(02)03110-1

    PubMed  CAS  Google Scholar 

  70. Su RY, Chao Y, Chen TY, Huang DY, Lin WW (2007) 5-Aminoimidazole-4-carboxamide riboside sensitizes TRAIL- and TNF{alpha}-induced cytotoxicity in colon cancer cells through AMP-activated protein kinase signaling. Mol Cancer Ther 6:1562–1571. doi:10.1158/1535-7163.MCT-06-0800

    PubMed  CAS  Google Scholar 

  71. Hong SJ, Dawson TM, Dawson VL (2004) Nuclear and mitochondrial conversations in cell death: PARP-1 and AIF signaling. Trends Pharmacol Sci 25:259–264. doi:10.1016/j.tips.2004.03.005

    PubMed  CAS  Google Scholar 

  72. Suarez-Pinzon WL, Mabley JG, Power R, Szabo C, Rabinovitch A (2003) Poly (ADP-ribose) polymerase inhibition prevents spontaneous and recurrent autoimmune diabetes in NOD mice by inducing apoptosis of islet-infiltrating leukocytes. Diabetes 52:1683–1688. doi:10.2337/diabetes.52.7.1683

    PubMed  CAS  Google Scholar 

  73. Kolb H, Burkart V (1999) Nicotinamide in type 1 diabetes. Mechanism of action revisited. Diabetes Care 22(Suppl 2):16–20

    Google Scholar 

  74. Yu SW, Wang H, Poitras MF, Coombs C, Bowers WJ, Federoff HJ, Poirier GG, Dawson TM, Dawson VL (2002) Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297:259–263. doi:10.1126/science.1072221

    PubMed  CAS  Google Scholar 

  75. Abramov AY, Duchen MR (2008) Mechanisms underlying the loss of mitochondrial membrane potential in glutamate excitotoxicity. Biochim Biophys Acta 1777:953–964. doi:10.1016/j.bbabio.2008.04.017

    PubMed  CAS  Google Scholar 

  76. Moubarak RS, Yuste VJ, Artus C, Bouharrour A, Greer PA, Menissier-de Murcia J, Susin SA (2007) Sequential activation of poly(ADP-ribose) polymerase 1, calpains, and Bax is essential in apoptosis-inducing factor-mediated programmed necrosis. Mol Cell Biol 27:4844–4862. doi:10.1128/MCB.02141-06

    PubMed  CAS  Google Scholar 

  77. Moncada S, Erusalimsky JD (2002) Does nitric oxide modulate mitochondrial energy generation and apoptosis? Nat Rev Mol Cell Biol 3:214–220. doi:10.1038/nrm762

    PubMed  CAS  Google Scholar 

  78. Erusalimsky JD, Moncada S (2007) Nitric oxide and mitochondrial signaling: from physiology to pathophysiology. Arterioscler Thromb Vasc Biol 27:2524–2531. doi:10.1161/ATVBAHA.107.151167

    PubMed  CAS  Google Scholar 

  79. Xu W, Liu L, Charles IG, Moncada S (2004) Nitric oxide induces coupling of mitochondrial signalling with the endoplasmic reticulum stress response. Nat Cell Biol 6:1129–1134. doi:10.1038/ncb1188

    PubMed  CAS  Google Scholar 

  80. Oyadomari S, Takeda K, Takiguchi M, Gotoh T, Matsumoto M, Wada I, Akira S, Araki E, Mori M (2001) Nitric oxide-induced apoptosis in pancreatic beta cells is mediated by the endoplasmic reticulum stress pathway. Proc Natl Acad Sci USA 98:10845–10850. doi:10.1073/pnas.191207498

    PubMed  CAS  Google Scholar 

  81. Zhou YP, Teng D, Dralyuk F, Ostrega D, Roe MW, Philipson L, Polonsky KS (1998) Apoptosis in insulin-secreting cells. Evidence for the role of intracellular Ca2+ stores and arachidonic acid metabolism. J Clin Invest 101:1623–1632. doi:10.1172/JCI1245

    PubMed  CAS  Google Scholar 

  82. Eizirik DL, Cardozo AK, Cnop M (2008) The role for endoplasmic reticulum stress in Diabetes mellitus. Endocr Rev 29:42–61. doi:10.1210/er.2007-0015

    PubMed  CAS  Google Scholar 

  83. Ni M, Lee AS (2007) ER chaperones in mammalian development and human diseases. FEBS Lett 581:3641–3651. doi:10.1016/j.febslet.2007.04.045

    PubMed  CAS  Google Scholar 

  84. Pirot P, Ortis F, Cnop M, Ma Y, Hendershot LM, Eizirik DL, Cardozo AK (2007) Transcriptional regulation of the endoplasmic reticulum stress gene chop in pancreatic insulin-producing cells. Diabetes 56:1069–1077. doi:10.2337/db06-1253

    PubMed  CAS  Google Scholar 

  85. Akerfeldt MC, Howes J, Chan JY, Stevens VA, Boubenna N, McGuire HM, King C, Biden TJ, Laybutt DR (2008) Cytokine-induced {beta}-cell death is independent of endoplasmic reticulum stress signaling. Diabetes 57:3034–3044. doi:10.2337/db07-1802

    PubMed  CAS  Google Scholar 

  86. Cj Huang, Cy Lin, Haataja L, Gurlo T, Butler AE, Rizza RA, Butler PC (2007) High expression rates of human islet amyloid polypeptide induce endoplasmic reticulum stress mediated beta-cell apoptosis, a characteristic of humans with type 2 but not type 1 diabetes. Diabetes 56:2016–2027. doi:10.2337/db07-0197

    Google Scholar 

  87. Chang I, Cho N, Kim S, Kim JY, Kim E, Woo JE, Nam JH, Kim SJ, Lee MS (2004) Role of calcium in pancreatic islet cell death by IFN-gamma/TNF-alpha. J Immunol 172:7008–7014

    PubMed  CAS  Google Scholar 

  88. Park SY, Cho N, Chang I, Chung JH, Min YK, Lee MK, Kim KW, Kim SJ, Lee MS (2005) Effect of PK11195, a peripheral benzodiazepine receptor agonist, on insulinoma cell death and insulin secretion. Apoptosis 10:537–544. doi:10.1007/s10495-005-1884-1

    PubMed  CAS  Google Scholar 

  89. Cunha DA, Hekerman P, Ladriere L, Bazarra-Castro A, Ortis F, Wakeham MC, Moore F, Rasschaert J, Cardozo AK, Bellomo E, Overbergh L, Mathieu C, Lupi R, Hai T, Herchuelz A, Marchetti P, Rutter GA, Eizirik DL, Cnop M (2008) Initiation and execution of lipotoxic ER stress in pancreatic beta-cells. J Cell Sci 121:2308–2318. doi:10.1242/jcs.026062

    PubMed  CAS  Google Scholar 

  90. Wang Q, Mora-Jensen H, Weniger MA, Perez-Galan P, Wolford C, Hai T, Ron D, Chen W, Trenkle W, Wiestner A, Ye Y (2009) ERAD inhibitors integrate ER stress with an epigenetic mechanism to activate BH3-only protein NOXA in cancer cells. Proc Natl Acad Sci USA 106:2200–2205. doi:10.1073/pnas.0807611106

    PubMed  CAS  Google Scholar 

  91. Foulis AK (2008) Pancreatic pathology in type 1 diabetes in human. Novartis Found Symp 292:2–13. doi:10.1002/9780470697405.ch2

    PubMed  CAS  Google Scholar 

  92. Richer MJ, Horwitz MS (2008) Viral infections in the pathogenesis of autoimmune diseases: focus on type 1 diabetes. Front Biosci 13:4241–4257. doi:10.2741/3002

    PubMed  CAS  Google Scholar 

  93. Moore CB, Ting JPY (2008) Regulation of mitochondrial antiviral signaling pathways. Immunity 28:735–739. doi:10.1016/j.immuni.2008.05.005

    PubMed  CAS  Google Scholar 

  94. Yoneyama M, Fujita T (2009) RNA recognition and signal transduction by RIG-I-like receptors. Immunol Rev 227:54–65. doi:10.1111/j.1600-065X.2008.00727.x

    PubMed  CAS  Google Scholar 

  95. Szabadkai G, Bianchi K, Varnai P, De Stefani D, Wieckowski MR, Cavagna D, Nagy AI, Balla T, Rizzuto R (2006) Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol 175:901–911. doi:10.1083/jcb.200608073

    PubMed  CAS  Google Scholar 

  96. Kaul SC, Deocaris CC, Wadhwa R (2007) Three faces of mortalin: a housekeeper, guardian and killer. Exp Gerontol 42:263–274. doi:10.1016/j.exger.2006.10.020

    PubMed  CAS  Google Scholar 

  97. Szabadkai G, Duchen MR (2008) Mitochondria: the hub of cellular Ca2+ signaling. Physiology 23:84–94. doi:10.1152/physiol.00046.2007

    PubMed  CAS  Google Scholar 

  98. Johannesen J, Pie A, Karlsen AE, Larsen ZM, Jensen A, Vissing H, Kristiansen OP, Pociot F, Nerup J (2004) Is mortalin a candidate gene for T1DM? Autoimmunity 37:423–430. doi:10.1080/08916930410001710037

    PubMed  CAS  Google Scholar 

  99. Souza KLA, Gurgul-Convey E, Elsner M, Lenzen S (2008) Interaction between pro-inflammatory and anti-inflammatory cytokines in insulin-producing cells. J Endocrinol 197:139–150. doi:10.1677/JOE-07-0638

    PubMed  CAS  Google Scholar 

  100. Illies C, Gromada J, Fiume R, Leibiger B, Yu J, Juhl K, Yang SN, Barma DK, Falck JR, Saiardi A, Barker CJ, Berggren PO (2007) Requirement of inositol pyrophosphates for full exocytotic capacity in pancreatic beta cells. Science 318:1299–1302. doi:10.1126/science.1146824

    PubMed  CAS  Google Scholar 

  101. Majerus PW, Zou J, Marjanovic J, Kisseleva MV, Wilson MP (2008) The role of inositol signaling in the control of apoptosis. Adv Enzyme Regul 48:10–17. doi:10.1016/j.advenzreg.2008.04.001

    PubMed  CAS  Google Scholar 

  102. Nyman LR, Wells KS, Head WS, McCaughey M, Ford E, Brissova M, Piston DW, Powers AC (2008) Real-time, multidimensional in vivo imaging used to investigate blood flow in mouse pancreatic islets. J Clin Invest 118:3790–3797. doi:10.1172/JCI36209

    PubMed  CAS  Google Scholar 

  103. Medarova Z, Bonner-Weir S, Lipes M, Moore A (2005) Imaging beta-cell death with a near-infrared probe. Diabetes 54:1780–1788. doi:10.2337/diabetes.54.6.1780

    PubMed  CAS  Google Scholar 

  104. D’Hertog W, Overbergh L, Lage K, Ferreira GB, Maris M, Gysemans C, Flamez D, Cardozo AK, Van den Bergh G, Schoofs L, Arckens L, Moreau Y, Hansen DA, Eizirik DL, Waelkens E, Mathieu C (2007) Proteomics analysis of cytokine-induced dysfunction and death in insulin-producing INS-1E cells: new insights into the pathways involved. Mol Cell Proteomics 6:2180–2199. doi:10.1074/mcp.M700085-MCP200

    PubMed  Google Scholar 

  105. Trujillo ME, Scherer PE (2006) Adipose tissue-derived factors: impact on health and disease. Endocr Rev 27:762–778

    PubMed  CAS  Google Scholar 

  106. Sethi JK, Vidal-Puig AJ (2007) Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res 48:1253–1262. doi:10.1194/jlr.R700005-JLR200

    CAS  Google Scholar 

  107. McGarry JD (2002) Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 51:7–18. doi:10.2337/diabetes.51.1.7

    PubMed  CAS  Google Scholar 

  108. Neschen S, Morino K, Hammond LE, Zhang D, Liu ZX, Romanelli AJ, Cline GW, Pongratz RL, Zhang XM, Choi CS, Coleman RA, Shulman GI (2005) Prevention of hepatic steatosis and hepatic insulin resistance in mitochondrial acyl-CoA:glycerol-sn-3-phosphate acyltransferase 1 knockout mice. Cell Metab 2:55–65. doi:10.1016/j.cmet.2005.06.006

    PubMed  CAS  Google Scholar 

  109. Abu-Elheiga L, Oh W, Kordari P, Wakil SJ (2003) Acetyl-CoA carboxylase 2 mutant mice are protected against obesity and diabetes induced by high-fat/high-carbohydrate diets. Proc Natl Acad Sci USA 100:10207–10212. doi:10.1073/pnas.1733877100

    PubMed  CAS  Google Scholar 

  110. Savage DB, Choi CS, Samuel VT, Liu ZX, Zhang D, Wang A, Zhang XM, Cline GW, Yu XX, Geisler JG, Bhanot S, Monia BP, Shulman GI (2006) Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2. J Clin Invest 116:817–824. doi:10.1172/JCI27300

    PubMed  CAS  Google Scholar 

  111. Holland WL, Brozinick JT, Wang LP, Hawkins ED, Sargent KM, Liu Y, Narra K, Hoehn KL, Knotts TA, Siesky A, Nelson DH, Karathanasis SK, Fontenot GK, Birnbaum MJ, Summers SA (2007) Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab 5:167–179. doi:10.1016/j.cmet.2007.01.002

    PubMed  CAS  Google Scholar 

  112. Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, DePinho RA, Montminy M, Cantley LC (2005) The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310:1642–1646. doi:10.1126/science.1120781

    PubMed  CAS  Google Scholar 

  113. Koves TR, Li P, An J, Akimoto T, Slentz D, Ilkayeva O, Dohm GL, Yan Z, Newgard CB, Muoio DM (2005) Peroxisome proliferator-activated receptor-{gamma} co-activator 1{alpha}-mediated metabolic remodeling of skeletal myocytes mimics exercise training and reverses lipid-induced mitochondrial inefficiency. J Biol Chem 280:33588–33598. doi:10.1074/jbc.M507621200

    PubMed  CAS  Google Scholar 

  114. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124. doi:10.1016/S0092-8674(00)80611-X

    PubMed  CAS  Google Scholar 

  115. Lin J, Handschin C, Spiegelman BM (2005) Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 1:361–370. doi:10.1016/j.cmet.2005.05.004

    PubMed  Google Scholar 

  116. Scarpulla RC (2008) Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev 88:611–638. doi:10.1152/physrev.00025.2007

    PubMed  CAS  Google Scholar 

  117. Ward WF, Liang H, Balas B, Tantiwong P, Dube JJ, Goodpaster BH, O’Doherty RM, Defronzo RA, Richardson A, Musi N (2009) Whole-body overexpression of PGC-1{alpha} has opposite effects on hepatic and muscle insulin sensitivity. Am J Physiol Endocrinol Metab 296:E945–E954

    PubMed  Google Scholar 

  118. Li X, Monks B, Ge Q, Birnbaum MJ (2007) Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1[agr] transcription coactivator. Nature advanced online publication

  119. Nagai Y, Yonemitsu S, Erion DM, Iwasaki T, Stark R, Weismann D, Dong J, Zhang D, Jurczak MJ, Loffler MG, Cresswell J, Yu XX, Murray SF, Bhanot S, Monia BP, Bogan JS, Samuel V, Shulman GI (2009) The role of peroxisome proliferator-activated receptor gamma coactivator-1 beta in the pathogenesis of fructose-induced insulin resistance. Cell Metab 9:252–264. doi:10.1016/j.cmet.2009.01.011

    PubMed  CAS  Google Scholar 

  120. Poitout V, Robertson RP (2008) Glucolipotoxicity: fuel excess and {beta}-cell dysfunction. Endocr Rev 29:351–366. doi:10.1210/er.2007-0023

    PubMed  CAS  Google Scholar 

  121. Prentki M, Joly E, El Assaad W, Roduit R (2002) Malonyl-CoA signaling, lipid partitioning, and glucolipotoxicity: role in beta-cell adaptation and failure in the etiology of diabetes. Diabetes 51(Suppl 3):405–413. doi:10.2337/diabetes.51.2007.S405

    Google Scholar 

  122. Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, Lee CT, Lopaschuk GD, Puttagunta L, Bonnet S, Harry G, Hashimoto K, Porter CJ, Andrade MA, Thebaud B, Michelakis ED (2007) A mitochondria-k(+) channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11:37–51. doi:10.1016/j.ccr.2006.10.020

    PubMed  CAS  Google Scholar 

  123. McMurtry MS, Bonnet S, Wu X, Dyck JRB, Haromy A, Hashimoto K, Michelakis ED (2004) Dichloroacetate prevents and reverses pulmonary hypertension by inducing pulmonary artery smooth muscle cell apoptosis. Circ Res 95:830–840. doi:10.1161/01.RES.0000145360.16770.9f

    PubMed  CAS  Google Scholar 

  124. McFate T, Mohyeldin A, Lu H, Thakar J, Henriques J, Halim ND, Wu H, Schell MJ, Tsang TM, Teahan O, Zhou S, Califano JA, Jeoung NH, Harris RA, Verma A (2008) Pyruvate dehydrogenase complex activity controls metabolic and malignant phenotype in cancer cells. J Biol Chem 283:22700–22708. doi:10.1074/jbc.M801765200

    PubMed  CAS  Google Scholar 

  125. Cantley J, Selman C, Shukla D, Abramov AY, Forstreuter F, Esteban MA, Claret M, Lingard SJ, Clements M, Harten SK, Asare-Anane H, Batterham RL, Herrera PL, Persaud SJ, Duchen MR, Maxwell PH, Withers DJ (2009) Deletion of the von Hippel-Lindau gene in pancreatic beta cells impairs glucose homeostasis in mice. J Clin Invest 119:125–135

    PubMed  CAS  Google Scholar 

  126. Boulahbel H, Duran RV, Gottlieb E (2009) Prolyl hydroxylases as regulators of cell metabolism. Biochem Soc Trans 37:291–294. doi:10.1042/BST0370291

    PubMed  CAS  Google Scholar 

  127. Chen W, Ostrowski RP, Obenaus A, Zhang JH (2009) Prodeath or prosurvival: two facets of hypoxia inducible factor-1 in perinatal brain injury. Exp Neurol 216:7–15. doi:10.1016/j.expneurol.2008.10.016

    PubMed  CAS  Google Scholar 

  128. Miyamoto S, Murphy AN, Brown JH (2008) Akt mediates mitochondrial protection in cardiomyocytes through phosphorylation of mitochondrial hexokinase-II. Cell Death Differ 15:521–529. doi:10.1038/sj.cdd.4402285

    PubMed  CAS  Google Scholar 

  129. Pastorino JG, Hoek JB, Shulga N (2005) Activation of glycogen synthase kinase 3{beta} disrupts the binding of hexokinase II to mitochondria by phosphorylating voltage-dependent anion channel and potentiates chemotherapy-induced cytotoxicity. Cancer Res 65:10545–10554. doi:10.1158/0008-5472.CAN-05-1925

    PubMed  CAS  Google Scholar 

  130. Robey RB, Hay N (2006) Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt. Oncogene 25:4683–4696. doi:10.1038/sj.onc.1209595

    PubMed  CAS  Google Scholar 

  131. Danial NN, Gramm CF, Scorrano L, Zhang CY, Krauss S, Ranger AM, Datta SR, Greenberg ME, Licklider LJ, Lowell BB, Gygi SP, Korsmeyer SJ (2003) BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature 424:952–956. doi:10.1038/nature01825

    PubMed  CAS  Google Scholar 

  132. Danial NN, Walensky LD, Zhang CY, Choi CS, Fisher JK, Molina AJA, Datta SR, Pitter KL, Bird GH, Wikstrom JD, Deeney JT, Robertson K, Morash J, Kulkarni A, Neschen S, Kim S, Greenberg ME, Corkey BE, Shirihai OS, Shulman GI, Lowell BB, Korsmeyer SJ (2008) Dual role of proapoptotic BAD in insulin secretion and beta cell survival. Nat Med 14(2):144–153

    PubMed  CAS  Google Scholar 

  133. Wikstrom JD, Katzman SM, Mohamed H, Twig G, Graf SA, Heart E, Molina AJA, Corkey BE, de Vargas LM, Danial NN, Collins S, Shirihai OS (2007) Beta-cell mitochondria exhibit membrane potential heterogeneity that can be altered by stimulatory or toxic fuel levels. Diabetes 56:2569–2578. doi:10.2337/db06-0757

    PubMed  CAS  Google Scholar 

  134. Roy SS, Madesh M, Davies E, Antonsson B, Danial N, Hajnoczky G (2009) Bad targets the permeability transition pore independent of Bax or Bak to switch between Ca2+-dependent cell survival and death. Mol Cell 33:377–388. doi:10.1016/j.molcel.2009.01.018

    PubMed  CAS  Google Scholar 

  135. Tomiyama A, Serizawa S, Tachibana K, Sakurada K, Samejima H, Kuchino Y, Kitanaka C (2006) Critical role for mitochondrial oxidative phosphorylation in the activation of tumor suppressors Bax and Bak. J Natl Cancer Inst 98:1462–1473

    Article  PubMed  CAS  Google Scholar 

  136. Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 13:472–482. doi:10.1016/j.ccr.2008.05.005

    PubMed  CAS  Google Scholar 

  137. Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O, Hurley PJ, Bunz F, Hwang PM (2006) p53 Regulates mitochondrial respiration. Science 312:1650–1653. doi:10.1126/science.1126863

    PubMed  CAS  Google Scholar 

  138. Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R, Gottlieb E, Vousden KH (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126:107–120. doi:10.1016/j.cell.2006.05.036

    PubMed  CAS  Google Scholar 

  139. Kondoh H, Lleonart ME, Gil J, Wang J, Degan P, Peters G, Martinez D, Carnero A, Beach D (2005) Glycolytic enzymes can modulate cellular life span. Cancer Res 65:177–185

    PubMed  CAS  Google Scholar 

  140. Wang HQ, Altomare DA, Skele KL, Poulikakos PI, Kuhajda FP, Di Cristofano A, Testa JR (2005) Positive feedback regulation between AKT activation and fatty acid synthase expression in ovarian carcinoma cells. Oncogene 24:3574–3582. doi:10.1038/sj.onc.1208463

    PubMed  CAS  Google Scholar 

  141. Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD, Pan Y, Simon MC, Thompson CB, Gottlieb E (2005) Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 7:77–85. doi:10.1016/j.ccr.2004.11.022

    PubMed  CAS  Google Scholar 

  142. Christofk HR, Vander Heiden MG, Wu N, Asara JM, Cantley LC (2008) Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452:181–186. doi:10.1038/nature06667

    PubMed  CAS  Google Scholar 

  143. Kwong JQ, Henning MS, Starkov AA, Manfredi G (2007) The mitochondrial respiratory chain is a modulator of apoptosis. J Cell Biol 179:1163–1177. doi:10.1083/jcb.200704059

    PubMed  CAS  Google Scholar 

  144. Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, Stojdl DF, Bell JC, Hettmann T, Leiden JM, Ron D (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11:619–633. doi:10.1016/S1097-2765(03)00105-9

    PubMed  CAS  Google Scholar 

  145. DeYoung MP, Horak P, Sofer A, Sgroi D, Ellisen LW (2008) Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14–3-3 shuttling. Genes Dev 22:239–251. doi:10.1101/gad.1617608

    PubMed  CAS  Google Scholar 

  146. Liu L, Cash TP, Jones RG, Keith B, Thompson CB, Simon MC (2006) Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol Cell 21:521–531. doi:10.1016/j.molcel.2006.01.010

    PubMed  Google Scholar 

  147. Scheuner D, Kaufman RJ (2008) The unfolded protein response: a pathway that links insulin demand with {beta}-cell failure and diabetes. Endocr Rev 29:317–333. doi:10.1210/er.2007-0039

    PubMed  CAS  Google Scholar 

  148. Song B, Scheuner D, Ron D, Pennathur S, Kaufman RJ (2008) Chop deletion reduces oxidative stress, improves beta cell function, and promotes cell survival in multiple mouse models of diabetes. J Clin Invest 118(10):3378–3389

    PubMed  CAS  Google Scholar 

  149. Wu J, Kaufman RJ (2006) From acute ER stress to physiological roles of the unfolded protein response. Cell Death, Differ

    Google Scholar 

  150. Westermark P, Wernstedt C, O’Brien TD, Hayden DW, Johnson KH (1987) Islet amyloid in type 2 human Diabetes mellitus and adult diabetic cats contains a novel putative polypeptide hormone. Am J Pathol 127:414–417

    PubMed  CAS  Google Scholar 

  151. Matveyenko AV, Butler PC (2006) Beta-cell deficit due to increased apoptosis in the human islet amyloid polypeptide transgenic (HIP) rat recapitulates the metabolic defects present in type 2 diabetes. Diabetes 55:2106–2114. doi:10.2337/db05-1672

    PubMed  CAS  Google Scholar 

  152. Stoy J, Edghill EL, Flanagan SE, Ye H, Paz VP, Pluzhnikov A, Below JE, Hayes MG, Cox NJ, Lipkind GM, Lipton RB, Greeley SA, Patch AM, Ellard S, Steiner DF, Hattersley AT, Philipson LH, Bell GI (2007) Insulin gene mutations as a cause of permanent neonatal diabetes. Proc Natl Acad Sci USA 104:15040–15044. doi:10.1073/pnas.0707291104

    PubMed  Google Scholar 

  153. Oyadomari S, Koizumi A, Takeda K, Gotoh T, Akira S, Araki E, Mori M (2002) Targeted disruption of the chop gene delays endoplasmic reticulum stress-mediated diabetes. J Clin Invest 109:525–532

    PubMed  CAS  Google Scholar 

  154. Scheuner D, Vander Mierde D, Song B, Flamez D, Creemers JWM, Tsukamoto K, Ribick M, Schuit FC, Kaufman RJ (2005) Control of mRNA translation preserves endoplasmic reticulum function in beta cells and maintains glucose homeostasis. Nat Med 11:757–764. doi:10.1038/nm1259

    PubMed  CAS  Google Scholar 

  155. Vander Mierde D, Scheuner D, Quintens R, Patel R, Song B, Tsukamoto K, Beullens M, Kaufman RJ, Bollen M, Schuit FC (2007) Glucose activates a protein phosphatase-1-mediated signaling pathway to enhance overall translation in pancreatic beta-cells. Endocrinology 148:609–617. doi:10.1210/en.2006-1012

    PubMed  CAS  Google Scholar 

  156. Polak P, Hall MN (2009) mTOR and the control of whole body metabolism. Curr Opin Cell Biol 21(2):209–218

    PubMed  CAS  Google Scholar 

  157. Corradetti MN, Guan KL (2006) Upstream of the mammalian target of rapamycin: do all roads pass through mTOR? Oncogene 25:6347–6360. doi:10.1038/sj.onc.1209885

    PubMed  CAS  Google Scholar 

  158. Ozcan U, Ozcan L, Yilmaz E, Duvel K, Sahin M, Manning BD, Hotamisligil GS (2008) Loss of the tuberous sclerosis complex tumor suppressors triggers the unfolded protein response to regulate insulin signaling and apoptosis. Mol Cell 29:541–551. doi:10.1016/j.molcel.2007.12.023

    PubMed  CAS  Google Scholar 

  159. Liu L, Wise DR, Diehl JA, Simon MC (2008) Hypoxic reactive oxygen species regulate the integrated stress response and cell survival. J Biol Chem 283:31153–31162. doi:10.1074/jbc.M805056200

    PubMed  CAS  Google Scholar 

  160. Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT (1998) Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci USA 95:11715–11720. doi:10.1073/pnas.95.20.11715

    PubMed  CAS  Google Scholar 

  161. Lee GH, Kim HK, Chae SW, Kim DS, Ha KC, Cuddy M, Kress C, Reed JC, Kim HR, Chae HJ (2007) Bax inhibitor-1 regulates endoplasmic reticulum stress-associated reactive oxygen species and heme oxygenase-1 expression. J Biol Chem 282:21618–21628. doi:10.1074/jbc.M700053200

    PubMed  CAS  Google Scholar 

  162. Tu BP, Weissman JS (2004) Oxidative protein folding in eukaryotes: mechanisms and consequences. J Cell Biol 164:341–346. doi:10.1083/jcb.200311055

    PubMed  CAS  Google Scholar 

  163. Tu BP, Weissman JS (2002) The FAD- and O(2)-dependent reaction cycle of Ero1-mediated oxidative protein folding in the endoplasmic reticulum. Mol Cell 10:983–994. doi:10.1016/S1097-2765(02)00696-2

    PubMed  CAS  Google Scholar 

  164. Kincaid MM, Cooper AA (2007) ERADicate ER stress or die trying. Antioxid Redox Signal 9:2373–2387. doi:10.1089/ars.2007.1817

    PubMed  CAS  Google Scholar 

  165. Robertson R, Zhou H, Zhang T, Harmon JS (2007) Chronic oxidative stress as a mechanism for glucose toxicity of the beta cell in type 2 diabetes. Cell Biochem Biophys 48:139–146. doi:10.1007/s12013-007-0026-5

    PubMed  CAS  Google Scholar 

  166. Kaneto H, Katakami N, Kawamori D, Miyatsuka T, Sakamoto K, Matsuoka TA, Matsuhisa M, Yamasaki Y (2007) Involvement of oxidative stress in the pathogenesis of diabetes. Antioxid Redox Signal 9:355–366. doi:10.1089/ars.2006.1465

    PubMed  CAS  Google Scholar 

  167. Robertson RP (2004) Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J Biol Chem 279:42351–42354. doi:10.1074/jbc.R400019200

    PubMed  CAS  Google Scholar 

  168. Fernandes AP, Holmgren A (2004) Glutaredoxins: glutathione-dependent redox enzymes with functions far beyond a simple thioredoxin backup system. Antioxid Redox Signal 6:63–74. doi:10.1089/152308604771978354

    PubMed  CAS  Google Scholar 

  169. Malhotra JD, Kaufman RJ (2007) Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid Redox Signal 9:2277–2293. doi:10.1089/ars.2007.1782

    PubMed  CAS  Google Scholar 

  170. Galluzzi L, Maiuri MC, Vitale I, Zischka H, Castedo M, Zitvogel L, Kroemer G (2007) Cell death modalities: classification and pathophysiological implications. Cell Death Differ 14:1237–1243. doi:10.1038/sj.cdd.4402148

    PubMed  CAS  Google Scholar 

  171. Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629. doi:10.1126/science.1099320

    PubMed  CAS  Google Scholar 

  172. Harding HP, Zeng H, Zhang Y, Jungries R, Chung P, Plesken H, Sabatini DD, Ron D (2001) Diabetes mellitus and exocrine pancreatic dysfunction in perk-/- mice reveals a role for translational control in secretory cell survival. Mol Cell 7:1153–1163. doi:10.1016/S1097-2765(01)00264-7

    PubMed  CAS  Google Scholar 

  173. Huang G, Yao J, Zeng W, Mizuno Y, Kamm KE, Stull JT, Harding HP, Ron D, Muallem S (2006) ER stress disrupts Ca2+-signaling complexes and Ca2+ regulation in secretory and muscle cells from PERK-knockout mice. J Cell Sci 119:153–161. doi:10.1242/jcs.02731

    PubMed  CAS  Google Scholar 

  174. Herbach N, Rathkolb B, Kemter E, Pichl L, Klaften M, de Angelis MH, Halban PA, Wolf E, Aigner B, Wanke R (2007) Dominant-negative effects of a novel mutated Ins2 allele causes early-onset diabetes and severe {beta}-cell loss in Munich Ins2C95S mutant mice. Diabetes 56:1268–1276. doi:10.2337/db06-0658

    PubMed  CAS  Google Scholar 

  175. Szegezdi E, Logue SE, Gorman AM, Samali A (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 7:880–885. doi:10.1038/sj.embor.7400779

    PubMed  CAS  Google Scholar 

  176. Marciniak SJ, Ron D (2006) Endoplasmic reticulum stress signaling in disease. Physiol Rev 86:1133–1149. doi:10.1152/physrev.00015.2006

    PubMed  CAS  Google Scholar 

  177. Oyadomari S, Mori M (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11:381–389. doi:10.1038/sj.cdd.4401373

    PubMed  CAS  Google Scholar 

  178. Marciniak SJ, Yun CY, Oyadomari S, Novoa I, Zhang Y, Jungreis R, Nagata K, Harding HP, Ron D (2004) CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev 18:3066–3077. doi:10.1101/gad.1250704

    PubMed  CAS  Google Scholar 

  179. Puthalakath H, O’Reilly LA, Gunn P, Lee L, Kelly PN, Huntington ND, Hughes PD, Michalak EM, McKimm-Breschkin J, Motoyama N, Gotoh T, Akira S, Bouillet P, Strasser A (2007) ER stress triggers apoptosis by activating BH3-only protein Bim. Cell 129:1337–1349. doi:10.1016/j.cell.2007.04.027

    PubMed  CAS  Google Scholar 

  180. Wang XZ, Kuroda M, Sok J, Batchvarova N, Kimmel R, Chung P, Zinszner H, Ron D (1998) Identification of novel stress-induced genes downstream of chop. EMBO J 17:3619–3630. doi:10.1093/emboj/17.13.3619

    PubMed  CAS  Google Scholar 

  181. Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163. doi:10.1152/physrev.00013.2006

    PubMed  CAS  Google Scholar 

  182. Yamaguchi S, Ishihara H, Yamada T, Tamura A, Usui M, Tominaga R, Munakata Y, Satake C, Katagiri H, Tashiro F, Aburatani H, Tsukiyama-Kohara K, Ji Miyazaki, Sonenberg N, Oka Y (2008) ATF4-mediated induction of 4E-BP1 contributes to pancreatic beta cell survival under endoplasmic reticulum stress. Cell Metab 7:269–276. doi:10.1016/j.cmet.2008.01.008

    PubMed  CAS  Google Scholar 

  183. Moisoi N, Klupsch K, Fedele V, East P, Sharma S, Renton A, Plun-Favreau H, Edwards RE, Teismann P, Esposti MD, Morrison AD, Wood NW, Downward J, Martins LM (2009) Mitochondrial dysfunction triggered by loss of HtrA2 results in the activation of a brain-specific transcriptional stress response. Cell Death Differ 16:449–464. doi:10.1038/cdd.2008.166

    PubMed  CAS  Google Scholar 

  184. Zhao Q, Wang J, Levichkin IV, Stasinopoulos S, Ryan MT, Hoogenraad NJ (2002) A mitochondrial specific stress response in mammalian cells. EMBO J 21:4411–4419. doi:10.1093/emboj/cdf445

    PubMed  CAS  Google Scholar 

  185. Haynes CM, Petrova K, Benedetti C, Yang Y, Ron D (2007) ClpP mediates activation of a mitochondrial unfolded protein response in C. elegans. Dev Cell 13:467–480. doi:10.1016/j.devcel.2007.07.016

    PubMed  CAS  Google Scholar 

  186. Broadley SA, Hartl FU (2008) Mitochondrial stress signaling: a pathway unfolds. Trends Cell Biol 18:1–4. doi:10.1016/j.tcb.2007.11.003

    PubMed  CAS  Google Scholar 

  187. Brough D, Schell MJ, Irvine RF (2005) Agonist-induced regulation of mitochondrial and endoplasmic reticulum motility. Biochem J 392:291–297. doi:10.1042/BJ20050738

    PubMed  CAS  Google Scholar 

  188. Wang X, Schwarz TL (2009) The mechanism of Ca2+-dependent regulation of kinesin-mediated mitochondrial motility. Cell 136:163–174. doi:10.1016/j.cell.2008.11.046

    PubMed  CAS  Google Scholar 

  189. Macaskill AF, Rinholm JE, Twelvetrees AE, Arancibia-Carcamo IL, Muir J, Fransson A, Aspenstrom P, Attwell D, Kittler JT (2009) Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron 61:541–555. doi:10.1016/j.neuron.2009.01.030

    PubMed  CAS  Google Scholar 

  190. Saotome M, Safiulina D, Szabadkai G, Das S, Fransson A, Aspenstrom P, Rizzuto R, Hajnoczky G (2008) Bidirectional Ca2+-dependent control of mitochondrial dynamics by the Miro GTPase. Proc Natl Acad Sci USA 105:20728–20733. doi:10.1073/pnas.0808953105

    PubMed  CAS  Google Scholar 

  191. Hayashi T, Rizzuto R, Hajnoczky G, Su TP (2009) MAM: more than just a housekeeper. Trends Cell Biol 19:81–88. doi:10.1016/j.tcb.2008.12.002

    PubMed  CAS  Google Scholar 

  192. Vance JE, Vance DE (2004) Phospholipid biosynthesis in mammalian cells. Biochem Cell Biol 82:113–128. doi:10.1139/o03-073

    PubMed  CAS  Google Scholar 

  193. Lebiedzinska M, Szabadkai G, Jones AW, Duszynski J, Wieckowski MR (2009) Interactions between the endoplasmic reticulum, mitochondria, plasma membrane and other subcellular organelles. Int J Biochem Cell Biol [Epub ahead of print]. doi:10.1016/j.biocel.2009.02.017

  194. Csordas G, Renken C, Varnai P, Walter L, Weaver D, Buttle KF, Balla T, Mannella CA, Hajnoczky G (2006) Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol 174:915–921. doi:10.1083/jcb.200604016

    PubMed  CAS  Google Scholar 

  195. Bannasch P (1996) Pathogenesis of hepatocellular carcinoma: sequential cellular, molecular, and metabolic changes. Prog Liver Dis 14:161–197

    PubMed  CAS  Google Scholar 

  196. de Brito OM, Scorrano L (2008) Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456:605–610. doi:10.1038/nature07534

    PubMed  Google Scholar 

  197. Simmen T, Aslan JE, Blagoveshchenskaya AD, Thomas L, Wan L, Xiang Y, Feliciangeli SF, Hung CH, Crump CM, Thomas G (2005) PACS-2 controls endoplasmic reticulum-mitochondria communication and Bid-mediated apoptosis. EMBO J 24:717–729. doi:10.1038/sj.emboj.7600559

    PubMed  CAS  Google Scholar 

  198. Yi M, Weaver D, Hajnoczky G (2004) Control of mitochondrial motility and distribution by the calcium signal: a homeostatic circuit. J Cell Biol 167:661–672. doi:10.1083/jcb.200406038

    PubMed  CAS  Google Scholar 

  199. Weihofen A, Thomas KJ, Ostaszewski BL, Cookson MR, Selkoe DJ (2009) Pink1 forms a multiprotein complex with Miro and Milton, linking Pink1 function to mitochondrial trafficking (dagger). Biochemistry [Epub ahead of print]. doi:10.1021/bi8019178

  200. Walter L, Hajnoczky G (2005) Mitochondria and endoplasmic reticulum: the lethal interorganelle cross-talk. J Bioenerg Biomembr 37:191–206. doi:10.1007/s10863-005-6600-x

    PubMed  CAS  Google Scholar 

  201. Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4:552–565. doi:10.1038/nrm1150

    PubMed  CAS  Google Scholar 

  202. Jacobson J, Duchen MR (2004) Interplay between mitochondria and cellular calcium signalling. Mol Cell Biochem 256–257:209–218. doi:10.1023/B:MCBI.0000009869.29827.df

    PubMed  Google Scholar 

  203. Duchen MR (2004) Roles of mitochondria in health and disease. Diabetes 53(Suppl 1):S96–S102. doi:10.2337/diabetes.53.2007.S96

    PubMed  CAS  Google Scholar 

  204. Bassik MC, Scorrano L, Oakes SA, Pozzan T, Korsmeyer SJ (2004) Phosphorylation of BCL-2 regulates ER Ca(2+) homeostasis and apoptosis. EMBO J 23:1207–1216. doi:10.1038/sj.emboj.7600104

    PubMed  CAS  Google Scholar 

  205. Szlufcik K, Missiaen L, Parys JB, Callewaert G, De Smedt H (2006) Uncoupled IP3 receptor can function as a Ca2+-leak channel: cell biological and pathological consequences. Biol Cell 98:1–14. doi:10.1042/BC20050031

    PubMed  CAS  Google Scholar 

  206. Chami M, Gozuacik D, Lagorce D, Brini M, Falson P, Peaucellier G, Pinton P, Lecoeur H, Gougeon ML, le Maire M, Rizzuto R, Brechot C, Paterlini-Brechot P (2001) SERCA1 truncated proteins unable to pump calcium reduce the endoplasmic reticulum calcium concentration and induce apoptosis. J Cell Biol 153:1301–1314. doi:10.1083/jcb.153.6.1301

    PubMed  CAS  Google Scholar 

  207. Bellinger AM, Reiken S, Carlson C, Mongillo M, Liu X, Rothman L, Matecki S, Lacampagne A, Marks AR (2009) Hypernitrosylated ryanodine receptor calcium release channels are leaky in dystrophic muscle. Nat Med 15:325–330. doi:10.1038/nm.1916

    PubMed  CAS  Google Scholar 

  208. Bellinger AM, Reiken S, Dura M, Murphy PW, Deng SX, Landry DW, Nieman D, Lehnart SE, Samaru M, Lacampagne A, Marks AR (2008) Remodeling of ryanodine receptor complex causes “leaky” channels: a molecular mechanism for decreased exercise capacity. Proc Natl Acad Sci USA 105:2198–2202. doi:10.1073/pnas.0711074105

    PubMed  CAS  Google Scholar 

  209. Deniaud A, Sharaf el dein O, Maillier E, Poncet D, Kroemer G, Lemaire C, Brenner C (2008) Endoplasmic reticulum stress induces calcium-dependent permeability transition, mitochondrial outer membrane permeabilization and apoptosis. Oncogene 27:285–299. doi:10.1038/sj.onc.1210638

    PubMed  CAS  Google Scholar 

  210. Hayashi T, Su TP (2007) Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell 131:596–610. doi:10.1016/j.cell.2007.08.036

    PubMed  CAS  Google Scholar 

  211. Bezprozvanny I, Mattson MP (2008) Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease. Trends Neurosci 31:454–463. doi:10.1016/j.tins.2008.06.005

    PubMed  CAS  Google Scholar 

  212. Rao RV, Ellerby HM, Bredesen DE (2004) Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ 11:372–380. doi:10.1038/sj.cdd.4401378

    PubMed  CAS  Google Scholar 

  213. Oakes SA, Opferman JT, Pozzan T, Korsmeyer SJ, Scorrano L (2003) Regulation of endoplasmic reticulum Ca2+ dynamics by proapoptotic BCL-2 family members. Biochem Pharmacol 66:1335–1340. doi:10.1016/S0006-2952(03)00482-9

    PubMed  CAS  Google Scholar 

  214. Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T, Korsmeyer SJ (2003) BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300:135–139. doi:10.1126/science.1081208

    PubMed  CAS  Google Scholar 

  215. Mathai JP, Germain M, Shore GC (2005) BH3-only BIK regulates BAX, BAK-dependent release of Ca2+ from endoplasmic reticulum stores and mitochondrial apoptosis during stress-induced cell death. J Biol Chem 280:23829–23836. doi:10.1074/jbc.M500800200

    PubMed  CAS  Google Scholar 

  216. Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, Brunskill EW, Sayen MR, Gottlieb RA, Dorn GW, Robbins J, Molkentin JD (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434:658–662. doi:10.1038/nature03434

    PubMed  CAS  Google Scholar 

  217. Du H, Guo L, Fang F, Chen D, Sosunov AA, McKhann GM, Yan Y, Wang C, Zhang H, Molkentin JD, Gunn-Moore FJ, Vonsattel JP, Arancio O, Chen JX, Yan SD (2008) Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer’s disease. Nat Med 14:1097–1105. doi:10.1038/nm.1868

    PubMed  CAS  Google Scholar 

  218. Nakayama H, Chen X, Baines CP, Klevitsky R, Zhang X, Zhang H, Jaleel N, Chua BHL, Hewett TE, Robbins J, Houser SR, Molkentin JD (2007) Ca2+- and mitochondrial-dependent cardiomyocyte necrosis as a primary mediator of heart failure. J Clin Invest 117:2431–2444. doi:10.1172/JCI31060

    PubMed  CAS  Google Scholar 

  219. Millay DP, Sargent MA, Osinska H, Baines CP, Barton ER, Vuagniaux G, Sweeney HL, Robbins J, Molkentin JD (2008) Genetic and pharmacologic inhibition of mitochondrial-dependent necrosis attenuates muscular dystrophy. Nat Med 14:442–447. doi:10.1038/nm1736

    PubMed  CAS  Google Scholar 

  220. Rasola A, Bernardi P (2007) The mitochondrial permeability transition pore and its involvement in cell death and in disease pathogenesis. Apoptosis 12:815–833. doi:10.1007/s10495-007-0723-y

    PubMed  CAS  Google Scholar 

  221. Forte M, Gold BG, Marracci G, Chaudhary P, Basso E, Johnsen D, Yu X, Fowlkes J, Rahder M, Stem K, Bernardi P, Bourdette D (2007) Cyclophilin D inactivation protects axons in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. Proc Natl Acad Sci USA 104:7558–7563. doi:10.1073/pnas.0702228104

    PubMed  CAS  Google Scholar 

  222. Boyce M, Bryant KF, Jousse C, Long K, Harding HP, Scheuner D, Kaufman RJ, Ma D, Coen DM, Ron D, Yuan J (2005) A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science 307:935–939. doi:10.1126/science.1101902

    PubMed  CAS  Google Scholar 

  223. Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith RO, Gorgun CZ, Hotamisligil GS (2006) Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313:1137–1140. doi:10.1126/science.1128294

    PubMed  Google Scholar 

Download references

Acknowledgments

G.S. holds grants from the UCL and the Parkinson’s Disease Society. Although we tried to cover all the fundamental results published in the field, we apologise to the authors whose work was not cited due to space restrictions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyorgy Szabadkai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szabadkai, G., Duchen, M.R. Mitochondria mediated cell death in diabetes. Apoptosis 14, 1405–1423 (2009). https://doi.org/10.1007/s10495-009-0363-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-009-0363-5

Keywords

Navigation