Skip to main content

Advertisement

Log in

Dietary polyunsaturated fatty acids as inducers of apoptosis: implications for cancer

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

It has recently become clear the role played by alterations in apoptosis during the development of several chronic diseases (i.e. inflammatory, neurodegenerative and neoplastic pathologies). For this reason, the research for possible therapeutic strategies involving the modulation of the apoptotic pathways has attracted considerable interest in the past few years. In particular, it has been shown that apoptosis may be induced or inhibited by a variety of nutritional compounds providing health benefits. The aim of this review is to examine the ability of different dietary polyunsaturated fatty acids (PUFAs) to induce apoptosis, especially in the cancer field. The molecular effects of different PUFAs found in dairy products, meat, fish, vegetable seeds and oils, and known to affect the incidence and progression of cancer and other chronic diseases, will be analyzed. To this aim, our effort will concentrate in critically reviewing the published works concerning the effects of: (a) the n-6 PUFAs γ-linolenic acid, arachidonic acid, and conjugated linoleic acid; (b) the n-3 PUFAs eicosapentaenoic acid and docosahexaenoic acid on the apoptotic process. We will also pay attention to the recent findings regarding the possible role of PUFAs as regulators of the endoplasmic reticulum stress-pathway of apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Calviello G, Serini S, Palozza P (2006) n-3 Polyunsaturated fatty acids as signal transduction modulators and therapeutical agents in cancer. Curr Signal Transduct Ther 1:255–271

    CAS  Google Scholar 

  2. Mattson MP (2000) Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol 1:120–129

    PubMed  CAS  Google Scholar 

  3. Johnstone RW, Frew AJ, Smyth MJ (2008) The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat Rev Cancer 8:782–798

    PubMed  CAS  Google Scholar 

  4. Calder PC (2008) Polyunsaturated fatty acids, inflammatory processes and inflammatory bowel diseases. Mol Nutr Food Res 52:885–897

    PubMed  CAS  Google Scholar 

  5. Calder PC (1997) n-3 polyunsaturated fatty acids and cytokine production in health and disease. Ann Nutr Metab 41:203–234

    PubMed  CAS  Google Scholar 

  6. Calviello G, Serini S, Piccioni E (2007) n-3 polyunsaturated fatty acids and the prevention of colorectal cancer: molecular mechanisms involved. Curr Med Chem 14:3059–3069

    PubMed  CAS  Google Scholar 

  7. Simopoulos AP (2003) Essential fatty acids in health and chronic diseases. Forum Nutr 56:67–70

    PubMed  CAS  Google Scholar 

  8. Kapoor R, Huang YS (2006) Gamma linolenic acid: an antiinflammatory omega-6 fatty acid. Curr Pharm Biotechnol 7:531–534

    PubMed  CAS  Google Scholar 

  9. Bhattacharya A, Banu J, Rahman M, Causey J, Fernandes G (2006) Biological effects of conjugated linoleic acids in health and disease. J Nutr Biochem 17:789–810

    PubMed  CAS  Google Scholar 

  10. Cao Y, Pearman AT, Zimmerman GA, McIntyre TM, Prescott SM (2000) Intracellular unesterified arachidonic acid signals apoptosis. Proc Natl Acad Sci USA 97:11280–11285

    PubMed  CAS  Google Scholar 

  11. Chapkin RS, Seo J, McMurray DN, Lupton JR (2008) Mechanisms by which docosahexaenoic acid and related fatty acids reduce colon cancer risk and inflammatory disorders of the intestine. Chem Phys Lipids 153:14–23

    PubMed  CAS  Google Scholar 

  12. Serini S, Trombino S, Oliva F, Piccioni E, Monego G, Resci F et al (2008) Docosahexaenoic acid induces apoptosis in lung cancer cells by increasing MKP-1 and down-regulating p-ERK1/2 and p-p38 expression. Apoptosis 13:1172–1183

    PubMed  CAS  Google Scholar 

  13. Calviello G, Resci F, Serini S, Piccioni E, Toesca A, Boninsegna A et al (2007) Docosahexaenoic acid induces proteasome-dependent degradation of beta-catenin, down-regulation of survivin and apoptosis in human colorectal cancer cells not expressing COX-2. Carcinogenesis 28:1202–1209

    PubMed  CAS  Google Scholar 

  14. Calviello G, Di Nicuolo F, Serini S, Piccioni E, Boninsegna A, Maggiano N et al (2005) Docosahexaenoic acid enhances the susceptibility of human colorectal cancer cells to 5-fluorouracil. Cancer Chemother Pharmacol 55:12–20

    PubMed  CAS  Google Scholar 

  15. Calviello G, Di Nicuolo F, Gragnoli S, Piccioni E, Serini S, Maggiano N et al (2004) n-3 PUFAs reduce VEGF expression in human colon cancer cells modulating the COX-2/PGE2 induced ERK-1 and -2 and HIF-1 alpha induction pathway. Carcinogenesis 25:2303–2310

    PubMed  CAS  Google Scholar 

  16. Calviello G, Palozza P, Maggiano N, Piccioni E, Franceschelli P, Frattucci A et al (1999) Cell proliferation, differentiation, and apoptosis are modified by n-3 polyunsaturated fatty acids in normal colonic mucosa. Lipids 34:599–604

    PubMed  CAS  Google Scholar 

  17. Borgeat P, Hamberg M, Samuelsson B (1976) Transformation of arachidonic acid and homo-gamma-linolenic acid by rabbit polymorphonuclear leukocytes. Monohydroxy acids from novel lipoxygenases. J Biol Chem 251:7816–7820

    PubMed  CAS  Google Scholar 

  18. Harbige LS (2003) Fatty acids, the immune response, and autoimmunity: a question of n-6 essentiality and the balance between n-6 and n-3. Lipids 38:323–341

    PubMed  CAS  Google Scholar 

  19. Leary WP, Robinson KM, Booyens J, Dippenaar N (1982) Some effects of gamma-linolenic acid on cultured human oesophageal carcinoma cells. S Afr Med J 62:681–683

    PubMed  CAS  Google Scholar 

  20. Bégin ME, Das UN, Ells G, Horrobin DF (1985) Selective killing of human cancer cells by polyunsaturated fatty acids. Prostaglandins Leukot Med 19:177–186

    PubMed  Google Scholar 

  21. Sagar PS, Das UN (1995) Cytotoxic action of cis-unsaturated fatty acids on human cervical carcinoma (HeLa) cells in vitro. Prostaglandins Leukot Essent Fat Acids 53:287–299

    CAS  Google Scholar 

  22. Das UN (2006) Tumoricidal and anti-angiogenic actions of gamma-linolenic acid and its derivatives. Curr Pharm Biotechnol 7:457–466

    PubMed  CAS  Google Scholar 

  23. Das UN (1991) Tumoricidal action of cis-unsaturated fatty acids and their relationship to free radicals and lipid peroxidation. Cancer Lett 56:235–243

    PubMed  CAS  Google Scholar 

  24. Kong X, Ge H, Hou L, Shi L, Liu Z (2006) Induction of apoptosis in K562/ADM cells by gamma-linolenic acid involves lipid peroxidation and activation of caspase-3. Chem Biol Interact 162:140–148

    PubMed  CAS  Google Scholar 

  25. Chung FL, Pan J, Choudhury S, Roy R, Hu W, Tang MS (2003) Formation of trans-4-hydroxy-2-nonenal- and other enal-derived cyclic DNA adducts from omega-3 and omega-6 polyunsaturated fatty acids and their roles in DNA repair and human p53 gene mutation. Mutat Res 531:25–36

    PubMed  CAS  Google Scholar 

  26. Menendez JA, Vellon L, Colomer R, Lupu R (2005) Effect of γ-linolenic acid on the transcriptional activity of the Her-2/neu (erbB-2) oncogene. J Natl Cancer Inst 97:1611–1615

    Article  PubMed  CAS  Google Scholar 

  27. Menendez JA, del Mar Barbacid M, Montero S, Sevilla E, Escrich E, Solanas M et al (2001) Effects of gamma-linolenic acid and oleic acid on paclitaxel cytotoxicity in human breast cancer cells. Eur J Cancer 37:402–413

    PubMed  CAS  Google Scholar 

  28. Colquhoun A (1998) Induction of apoptosis by polyunsaturated fatty acids and its relationship to fatty acid inhibition of carnitine palmitoyltransferase I activity in Hep2 cells. Biochem Mol Biol Int 45:331–336

    PubMed  CAS  Google Scholar 

  29. Sagar PS, Das UN, Koratkar R, Ramesh G, Padma M, Kumar GS (1992) Cytotoxic action of cis-unsaturated fatty acids on human cervical carcinoma (HeLa) cells: relationship to free radicals, and lipid peroxidation and its modulation by calmodulin antagonists. Cancer Lett 63:189–198

    PubMed  CAS  Google Scholar 

  30. Seegers JC, de Kock M, Lottering ML, Grobler CJ, van Papendorp DH, Shou Y et al (1997) Effects of gamma-linolenic acid and arachidonic acid on cell cycle progression and apoptosis induction in normal and transformed cells. Prostaglandins Leukot Essent Fat Acids 56:271–280

    CAS  Google Scholar 

  31. Mainou-Fowler T, Proctor SJ, Dickinson AM (2001) Gamma-linolenic acid induces apoptosis in B-chronic lymphocytic leukaemia cells in vitro. Leuk Lymphoma 40:393–403

    PubMed  CAS  Google Scholar 

  32. Gillis RC, Daley BJ, Enderson BL, Karlstad MD (2004) Inhibition of 5-lipoxygenase induces cell death in anti-inflammatory fatty acid-treated HL-60 cells. JPEN J Parenter Enter Nutr 28:308–314

    CAS  Google Scholar 

  33. Jung KC, Park CH, Hwang YH, Rhee HS, Lee JH, Kim HK et al (2006) Fatty acids, inhibitors for the DNA binding of c-Myc/Max dimer, suppress proliferation and induce apoptosis of differentiated HL-60 human leukemia cell. Leukemia 20:122–127

    PubMed  CAS  Google Scholar 

  34. Maia RC, Culver CA, Laster SM (2006) Evidence against calcium as a mediator of mitochondrial dysfunction during apoptosis induced by arachidonic acid and other free fatty acids. J Immunol 177:6398–6404

    PubMed  CAS  Google Scholar 

  35. Artwohl M, Roden M, Waldhäusl W, Freudenthaler A, Baumgartner-Parzer SM (2004) Free fatty acids trigger apoptosis and inhibit cell cycle progression in human vascular endothelial cells. FASEB J 18:146–148

    PubMed  CAS  Google Scholar 

  36. Surette ME, Koumenis IL, Edens MB, Tramposch KM, Chilton FH (2003) Inhibition of leukotriene synthesis, pharmacokinetics, and tolerability of a novel dietary fatty acid formulation in healthy adult subjects. Clin Ther 25:948–971

    PubMed  CAS  Google Scholar 

  37. Leaver HA, Wharton SB, Bell HS, Leaver-Yap IM, Whittle IR (2002) Highly unsaturated fatty acid induced tumour regression in glioma pharmacodynamics and bioavailability of gamma linolenic acid in an implantation glioma model: effects on tumour biomass, apoptosis and neuronal tissue histology. Prostaglandins Leukot Essent Fat Acids 67:283–292

    CAS  Google Scholar 

  38. Leaver HA, Bell HS, Rizzo MT, Ironside JW, Gregor A, Wharton SB et al (2002) Antitumour and pro-apoptotic actions of highly unsaturated fatty acids in glioma. Prostaglandins Leukot Essent Fat Acids 66:19–29

    CAS  Google Scholar 

  39. Ramos KL, Colquhoun A (2003) Protective role of glucose-6-phosphate dehydrogenase activity in the metabolic response of C6 rat glioma cells to polyunsaturated fatty acid exposure. Glia 43:149–166

    PubMed  Google Scholar 

  40. Colquhoun A, Schumacher RI (2001) Modifications in mitochondrial metabolism and ultrastructure and their relationship to tumour growth inhibition by gamma-linolenic acid. Mol Cell Biochem 218:13–20

    PubMed  CAS  Google Scholar 

  41. Griinari JM, Corl BA, Lacy SH, Chouinard PY, Nurmela KV, Bauman DE (2000) Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by Delta(9)-desaturase. J Nutr 130:2285–2291

    PubMed  CAS  Google Scholar 

  42. Chin SF, Liu W, Storkson JM, Ha YL, Pariza MW (1992) Dietary sources of conjugated dienoic isomers of linoleic acid, a newly recognized class of anticarcinogens. J Food Compon Anal 5:185–197

    CAS  Google Scholar 

  43. Majumder B, Wahle KW, Moir S, Schofield A, Choe SN, Farquharson A et al (2002) Conjugated linoleic acids (CLAs) regulate the expression of key apoptotic genes in human breast cancer cells. FASEB J 16:1447–1449

    PubMed  CAS  Google Scholar 

  44. Miglietta A, Bozzo F, Bocca C, Gabriel L, Trombetta A, Belotti S et al (2006) Conjugated linoleic acid induces apoptosis in MDA-MB-231 breast cancer cells through ERK/MAPK signalling and mitochondrial pathway. Cancer Lett 234:149–157

    PubMed  CAS  Google Scholar 

  45. Miller A, Stanton C, Devery R (2002) Cis 9, trans 11- and trans 10, cis 12-conjugated linoleic acid isomers induce apoptosis in cultured SW480 cells. Anticancer Res 22:3879–3887

    PubMed  CAS  Google Scholar 

  46. Beppu F, Hosokawa M, Tanaka L, Kohno H, Tanaka T, Miyashita K (2006) Potent inhibitory effect of trans9, trans11 isomer of conjugated linoleic acid on the growth of human colon cancer cells. J Nutr Biochem 17:830–836

    PubMed  CAS  Google Scholar 

  47. Cimini A, Cristiano L, Colafarina S, Benedetti E, Di Loreto S, Festuccia C et al (2005) PPARgamma-dependent effects of conjugated linoleic acid on the human glioblastoma cell line (ADF). Int J Cancer 117:923–933

    PubMed  CAS  Google Scholar 

  48. Yamasaki M, Miyamoto Y, Chujo H, Nishiyama K, Tachibana H, Yamada K (2005) Trans10, cis12-conjugated linoleic acid induces mitochondria-related apoptosis and lysosomal destabilization in rat hepatoma cells. Biochim Biophys Acta 1735:176–184

    PubMed  CAS  Google Scholar 

  49. Ochoa JJ, Farquharson AJ, Grant I, Moffat LE, Heys SD, Wahle KW (2004) Conjugated linoleic acids (CLAs) decrease prostate cancer cell proliferation: different molecular mechanisms for cis-9, trans-11 and trans-10, cis-12 isomers. Carcinogenesis 25:1185–1191

    PubMed  CAS  Google Scholar 

  50. Liu JR, Chen BQ, Yang YM, Wang XL, Xue YB, Zheng YM et al (2002) Effect of apoptosis on gastric adenocarcinoma cell line SGC-7901 induced by cis-9, trans-11-conjugated linoleic acid. World J Gastroenterol 8:999–1004

    PubMed  CAS  Google Scholar 

  51. Kim YS, Cerbo RM, Hah CK, Bahn KN, Kim JO, Ha YL (2008) Growth inhibition of osteosarcoma cell MG-63 by a mixture of trans, trans conjugated linoleic acid isomers: possible mechanistic actions. J Food Sci 73:T7–T15

    PubMed  CAS  Google Scholar 

  52. Muzio G, Maggiora M, Oraldi M, Trombetta A, Canuto RA (2007) PPARalpha and PP2A are involved in the proapoptotic effect of conjugated linoleic acid on human hepatoma cell line SK-HEP-1. Int J Cancer 121:2395–2401

    PubMed  CAS  Google Scholar 

  53. Ou L, Wu Y, Ip C, Meng X, Hsu YC, Ip MM (2008) Apoptosis induced by t10,c12-conjugated linoleic acid is mediated by an atypical endoplasmic reticulum stress response. J Lipid Res 49:985–994

    PubMed  CAS  Google Scholar 

  54. Szegezdi E, Logue SE, Gorman AM, Samali A (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 7:880–885

    PubMed  CAS  Google Scholar 

  55. Xu C, Bailly-Maitre B, Reed JC (2005) Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest 115:2656–2664

    PubMed  CAS  Google Scholar 

  56. Boyce M, Yuan J (2006) Cellular response to endoplasmic reticulum stress: a matter of life or death. Cell Death Differ 13:363–373

    PubMed  CAS  Google Scholar 

  57. Breckenridge DG, Germain M, Mathai JP, Nguyen M, Shore GC (2003) Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene 22:8608–8618

    PubMed  CAS  Google Scholar 

  58. Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M et al (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11:619–633

    PubMed  CAS  Google Scholar 

  59. Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H et al (1998) CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 12:982–995

    PubMed  CAS  Google Scholar 

  60. Iwakoshi NN, Lee AH, Glimcher LH (2003) The X-box binding protein-1 transcription factor is required for plasma cell differentiation and the unfolded protein response. Immunol Rev 194:29–38

    PubMed  CAS  Google Scholar 

  61. Nishitoh H, Saitoh M, Mochida Y, Takeda K, Nakano H, Rothe M et al (1998) ASK1 is essential for JNK/SAPK activation by TRAF2. Mol Cell 2:389–395

    PubMed  CAS  Google Scholar 

  62. Matsumoto M, Minami M, Takeda K, Sakao Y, Akira S (1996) Ectopic expression of CHOP (GADD153) induces apoptosis in M1 myeloblastic leukemia cells. FEBS Lett 395:143–147

    PubMed  CAS  Google Scholar 

  63. Szegezdi E, Fitzgerald U, Samali A (2003) Caspase-12 and ER-stress-mediated apoptosis: the story so far. Ann NY Acad Sci 1010:186–194

    PubMed  CAS  Google Scholar 

  64. Romero-Ramirez L, Cao H, Nelson D, Hammond E, Lee AH, Yoshida H et al (2004) XBP1 is essential for survival under hypoxic conditions and is required for tumor growth. Cancer Res 64:5943–5947

    PubMed  CAS  Google Scholar 

  65. Fels DR, Koumenis C (2006) The PERK/eIF2alpha/ATF4 module of the UPR in hypoxia resistance and tumor growth. Cancer Biol Ther 5:723–728

    PubMed  CAS  Google Scholar 

  66. Chujo H, Yamasaki M, Nou S, Koyanagi N, Tachibana H, Yamada K (2003) Effect of conjugated linoleic acid isomers on growth factor-induced proliferation of human breast cancer cells. Cancer Lett 202:81–87

    PubMed  CAS  Google Scholar 

  67. Kim EJ, Holthuizen PE, Park HS, Ha YL, Jung KC, Park JH (2002) Trans-10, cis-12-conjugated linoleic acid inhibits Caco-2 colon cancer cell growth. Am J Physiol Gastrointest Liver Physiol 283:G357–G367

    PubMed  CAS  Google Scholar 

  68. Cho HJ, Kim WK, Jung JI, Kim EJ, Lim SS, Kwon DY et al (2005) Trans-10, cis-12, not cis-9, trans-11, conjugated linoleic acid decreases ErbB3 expression in HT-29 human colon cancer cells. World J Gastroenterol 11:5142–5150

    PubMed  CAS  Google Scholar 

  69. Ou L, Ip C, Lisafeld B, Ip MM (2007) Conjugated linoleic acid induces apoptosis of murine mammary tumor cells via Bcl-2 loss. Biochem Biophys Res Commun 356:1044–1049

    PubMed  CAS  Google Scholar 

  70. Wang LS, Huang YW, Liu S, Yan P, Lin YC (2008) Conjugated linoleic acid induces apoptosis through estrogen receptor alpha in human breast tissue. BMC Cancer 8:208–221

    PubMed  Google Scholar 

  71. Lee SH, Yamaguchi K, Kim JS, Eling TE, Safe S, Park Y et al (2006) Conjugated linoleic acid stimulates an anti-tumorigenic protein NAG-1 in an isomer specific manner. Carcinogenesis 27:972–981

    PubMed  CAS  Google Scholar 

  72. Kelley NS, Hubbard NE, Erickson KL (2007) Conjugated linoleic acid isomers and cancer. J Nutr 137:2599–2607

    PubMed  CAS  Google Scholar 

  73. Maggiora M, Bologna M, Cerù MP, Possati L, Angelucci A, Cimini A et al (2004) An overview of the effect of linoleic and conjugated-linoleic acids on the growth of several human tumor cell lines. Int J Cancer 112:909–919

    PubMed  CAS  Google Scholar 

  74. Nugent AP, Roche HM, Noone EJ, Long A, Kelleher DK, Gibney MJ (2005) The effects of conjugated linoleic acid supplementation on immune function in healthy volunteers. Eur J Clin Nutr 59:742–750

    PubMed  CAS  Google Scholar 

  75. Mougios V, Matsakas A, Petridou A, Ring S, Sagredos A, Melissopoulou A et al (2001) Effect of supplementation with conjugated linoleic acid on human serum lipids and body fat. J Nutr Biochem 12:585–594

    PubMed  CAS  Google Scholar 

  76. Park HS, Ryu JH, Ha YL, Park JH (2001) Dietary conjugated linoleic acid (CLA) induces apoptosis of colonic mucosa in 1,2-dimethylhydrazine-treated rats: a possible mechanism of the anticarcinogenic effect by CLA. Br J Nutr 86:549–555

    PubMed  CAS  Google Scholar 

  77. Park HS, Chun CS, Kim S, Ha YL, Park JH (2006) Dietary trans-10, cis-12 and cis-9, trans-11 conjugated linoleic acids induce apoptosis in the colonic mucosa of rats treated with 1,2-dimethylhydrazine. J Med Food 9:22–27

    PubMed  CAS  Google Scholar 

  78. Rajakangas J, Basu S, Salminen I, Mutanen M (2003) Adenoma growth stimulation by the trans-10, cis-12 isomer of conjugated linoleic acid (CLA) is associated with changes in mucosal NF-kappaB and cyclin D1 protein levels in the Min mouse. J Nutr 133:1943–1948

    PubMed  CAS  Google Scholar 

  79. Ip C, Dong Y, Ip MM, Banni S, Carta G, Angioni E et al (2002) Conjugated linoleic acid isomers and mammary cancer prevention. Nutr Cancer 43:52–58

    PubMed  CAS  Google Scholar 

  80. Hubbard NE, Lim D, Erickson KL (2003) Effect of separate conjugated linoleic acid isomers on murine mammary tumorigenesis. Cancer Lett 190:13–19

    PubMed  CAS  Google Scholar 

  81. Ip MM, McGee SO, Masso-Welch PA, Ip C, Meng X, Ou L et al (2007) The t10,c12 isomer of conjugated linoleic acid stimulates mammary tumorigenesis in transgenic mice over-expressing erbB2 in the mammary epithelium. Carcinogenesis 28:1269–1276

    PubMed  Google Scholar 

  82. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–182

    PubMed  CAS  Google Scholar 

  83. Meng X, Shoemaker SF, McGee SO, Ip MM (2008) t10,c12-Conjugated linoleic acid stimulates mammary tumor progression in Her2/ErbB2 mice through activation of both proliferative and survival pathways. Carcinogenesis 29:1013–1021

    PubMed  CAS  Google Scholar 

  84. Yasui Y, Suzuki R, Kohno H, Miyamoto S, Beppu F, Hosokawa M et al (2007) 9trans, 11trans conjugated linoleic acid inhibits the development of azoxymethane-induced colonic aberrant crypt foci in rats. Nutr Cancer 59:82–91

    PubMed  CAS  Google Scholar 

  85. Tsuboyama-Kasaoka N, Takahashi M, Tanemura K, Kim HJ, Tange T, Okuyama H et al (2000) Conjugated linoleic acid supplementation reduces adipose tissue by apoptosis and develops lipodystrophy in mice. Diabetes 49:1534–1542

    PubMed  CAS  Google Scholar 

  86. Yun HS, Do SH, Jeong WI, Yang HJ, Yuan DW, Hong IH et al (2008) Cytotoxic effects of the conjugated linoleic acid isomers t10c12, c9t11-CLA and mixed form on rat hepatic stellate cells and CCl4-induced hepatic fibrosis. J Nutr Biochem 19:175–183

    PubMed  CAS  Google Scholar 

  87. Toomey S, Harhen B, Roche HM, Fitzgerald D, Belton O (2006) Profound resolution of early atherosclerosis with conjugated linoleic acid. Atherosclerosis 187:40–49

    PubMed  CAS  Google Scholar 

  88. Pariza MW, Park Y, Cook ME (2000) Mechanisms of action of conjugated linoleic acid: evidence and speculation. Proc Soc Exp Biol Med 223:8–13

    PubMed  CAS  Google Scholar 

  89. Park Y, Storkson JM, Albright KJ, Liu W, Pariza MW (1999) Evidence that trans10, cis12 isomer of conjugated linoleic acid induces body composition changes in mice. Lipids 34:235–241

    PubMed  CAS  Google Scholar 

  90. Miner JL, Cederberg CA, Nielsen MK, Chen X, Baile CA (2001) Conjugated linoleic acid (CLA), body fat, and apoptosis. Obes Res 9:129–134

    PubMed  CAS  Google Scholar 

  91. Evans M, Geigerman C, Cook J, Curtis L, Kuebler B, McIntosh M (2000) Conjugated linoleic acid suppresses triglyceride accumulation and induces apoptosis in 3T3-L1 preadipocytes. Lipids 35:899–910

    PubMed  CAS  Google Scholar 

  92. Hargrave KM, Meyer BJ, Li C, Azain MJ, Baile CA, Miner JL (2004) Influence of dietary conjugated linoleic acid and fat source on body fat and apoptosis in mice. Obes Res 12:1435–1444

    PubMed  CAS  Google Scholar 

  93. Pinzani M, Gentilini P (1999) Biology of hepatic stellate cells and their possible relevance in the pathogenesis of portal hypertension in cirrhosis. Semin Liver Dis 19:397–410

    PubMed  CAS  Google Scholar 

  94. Stachowska E, Baśkiewicz-Masiuk M, Dziedziejko V, Gutowska I, Baranowska-Bosiacka I, Marchlewicz M et al (2008) Conjugated linoleic acid increases intracellular ROS synthesis and oxygenation of arachidonic acid in macrophages. Nutrition 24:187–199

    PubMed  CAS  Google Scholar 

  95. Yu Y, Correll PH, Vanden Heuvel JP (2002) Conjugated linoleic acid decreases production of pro-inflammatory products in macrophages: evidence for a PPAR gamma-dependent mechanism. Biochim Biophys Acta 15:89–99

    Google Scholar 

  96. Brock TG, Peters-Golden M (2007) Activation and regulation of cellular eicosanoid biosynthesis. Sci World J 7:1273–1284

    CAS  Google Scholar 

  97. Khanapure SP, Garvey DS, Janero DR, Letts LG (2007) Eicosanoids in inflammation: biosynthesis, pharmacology, and therapeutic frontiers. Curr Top Med Chem 7:311–340

    PubMed  CAS  Google Scholar 

  98. Wang D, Dubois RN (2006) Prostaglandins and cancer. Gut 55:115–122

    PubMed  CAS  Google Scholar 

  99. Rose DP, Connolly JM (2000) Regulation of tumor angiogenesis by dietary fatty acids and eicosanoids. Nutr Cancer 37:119–127

    PubMed  CAS  Google Scholar 

  100. González-Périz A, Clària J (2007) New approaches to the modulation of the cyclooxygenase-2 and 5-lipoxygenase pathways. Curr Top Med Chem 7:297–309

    PubMed  Google Scholar 

  101. Monjazeb AM, High KP, Connoy A, Hart LS, Koumenis C, Chilton FH (2006) Arachidonic acid-induced gene expression in colon cancer cells. Carcinogenesis 27:1950–1960

    PubMed  CAS  Google Scholar 

  102. Dempke W, Rie C, Grothey A, Schmoll HJ (2001) Cyclooxygenase-2: a novel target for cancer chemotherapy? J Cancer Res Clin Oncol 127:411–417

    PubMed  CAS  Google Scholar 

  103. Gupta S, Srivastava M, Ahmad N, Sakamoto K, Bostwick DG, Mukhtar H (2001) Lipoxygenase-5 is overexpressed in prostate adenocarcinoma. Cancer 91:737–743

    PubMed  CAS  Google Scholar 

  104. Pérez R, Matabosch X, Llebaria A, Balboa MA, Balsinde J (2006) Blockade of arachidonic acid incorporation into phospholipids induces apoptosis in U937 promonocytic cells. J Lipid Res 47:484–491

    PubMed  Google Scholar 

  105. Fang KM, Chang WL, Wang SM, Su MJ, Wu ML (2008) Arachidonic acid induces both Na+ and Ca2+ entry resulting in apoptosis. J Neurochem 104:1177–1189

    PubMed  CAS  Google Scholar 

  106. Scorrano L, Penzo D, Petronilli V, Pagano F, Bernardi P (2001) Arachidonic acid causes cell death through the mitochondrial permeability transition. Implications for tumor necrosis factor-alpha apoptotic signaling. J Biol Chem 276:12035–12040

    PubMed  CAS  Google Scholar 

  107. Dymkowska D, Szczepanowska J, Wieckowski MR, Wojtczak L (2006) Short-term and long-term effects of fatty acids in rat hepatoma AS-30D cells: the way to apoptosis. Biochim Biophys Acta 1763:152–163

    PubMed  CAS  Google Scholar 

  108. Jayadev S, Linardic CM, Hannun YA (1994) Identification of arachidonic acid as a mediator of sphingomyelin hydrolysis in response to tumor necrosis factor alpha. J Biol Chem 269:5757–5763

    PubMed  CAS  Google Scholar 

  109. Vento R, D’Alessandro N, Giuliano M, Lauricella M, Carabillò M, Tesoriere G (2000) Induction of apoptosis by arachidonic acid in human retinoblastoma Y79 cells: involvement of oxidative stress. Exp Eye Res 70:503–517

    PubMed  CAS  Google Scholar 

  110. Calder PC (2004) n-3 Fatty acids and cardiovascular disease: evidence explained and mechanisms explored. Clin Sci (Lond) 107:1–11

    Article  CAS  Google Scholar 

  111. Alessandri JM, Guesnet P, Vancassel S, Astorg P, Denis I, Langelier B et al (2004) Polyunsaturated fatty acids in the central nervous system: evolution of concepts and nutritional implications throughout life. Reprod Nutr Dev 44:509–538

    PubMed  CAS  Google Scholar 

  112. Sijben JW, Calder PC (2007) Differential immunomodulation with long-chain n-3 PUFA in health and chronic disease. Proc Nutr Soc 66:237–259

    PubMed  CAS  Google Scholar 

  113. Calder PC (2006) n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr 83:1505S–1519S

    PubMed  CAS  Google Scholar 

  114. Switzer KC, McMurray DN, Chapkin RS (2004) Effects of dietary n-3 polyunsaturated fatty acids on T-cell membrane composition and function. Lipids 39:1163–1170

    PubMed  CAS  Google Scholar 

  115. Hirafuji M, Machida T, Hamaue N, Minami M (2003) Cardiovascular protective effects of n-3 polyunsaturated fatty acids with special emphasis on docosahexaenoic acid. J Pharmacol Sci 92:308–316

    PubMed  CAS  Google Scholar 

  116. Boudrault C, Bazinet RP, Ma DW (2009) Experimental models and mechanisms underlying the protective effects of n-3 polyunsaturated fatty acids in Alzheimer’s disease. J Nutr Biochem 20:1–10

    PubMed  CAS  Google Scholar 

  117. Pfrommer CA, Erl W, Weber PC (2006) Docosahexaenoic acid induces ciap1 mRNA and protects human endothelial cells from stress-induced apoptosis. Am J Physiol Heart Circ Physiol 290:H2178–H2186

    PubMed  CAS  Google Scholar 

  118. Heimli H, Giske C, Naderi S, Drevon CA, Hollung K (2002) Eicosapentaenoic acid promotes apoptosis in Ramos cells via activation of caspase-3 and -9. Lipids 37:797–802

    PubMed  CAS  Google Scholar 

  119. Danbara N, Yuri T, Tsujita-Kyutoku M, Sato M, Senzaki H, Takada H et al (2004) Conjugated docosahexaenoic acid is a potent inducer of cell cycle arrest and apoptosis and inhibits growth of colo 201 human colon cancer cells. Nutr Cancer 50:71–79

    PubMed  CAS  Google Scholar 

  120. Llor X, Pons E, Roca A, Alvarez M, Mañé J, Fernández-Bañares F et al (2003) The effects of fish oil, olive oil, oleic acid and linoleic acid on colorectal neoplastic processes. Clin Nutr 22:71–79

    PubMed  CAS  Google Scholar 

  121. Narayanan BA, Narayanan NK, Reddy BS (2001) Docosahexaenoic acid regulated genes and transcription factors inducing apoptosis in human colon cancer cells. Int J Oncol 19:1255–1262

    PubMed  CAS  Google Scholar 

  122. Arita K, Kobuchi H, Utsumi T, Takehara Y, Akiyama J, Horton AA et al (2001) Mechanism of apoptosis in HL-60 cells induced by n-3 and n-6 polyunsaturated fatty acids. Biochem Pharmacol 62:821–828

    PubMed  CAS  Google Scholar 

  123. Hofmanová J, Vaculová A, Kozubík A (2005) (DHA and AA) Polyunsaturated fatty acids sensitize human colon adenocarcinoma HT-29 cells to death receptor-mediated apoptosis. Cancer Lett 218:33–41

    PubMed  Google Scholar 

  124. Yano M, Kishida E, Iwasaki M, Kojo S, Masuzawa Y (2000) Docosahexaenoic acid and vitamin E can reduce human monocytic U937 cell apoptosis induced by tumor necrosis factor. J Nutr 130:1095–1101

    PubMed  CAS  Google Scholar 

  125. Wu M, Harvey KA, Ruzmetov N, Welch ZR, Sech L, Jackson K et al (2005) Omega-3 polyunsaturated fatty acids attenuate breast cancer growth through activation of a neutral sphingomyelinase-mediated pathway. Int J Cancer 117:340–348

    PubMed  CAS  Google Scholar 

  126. Siddiqui RA, Jenski LJ, Harvey KA, Wiesehan JD, Stillwell W, Zaloga GP (2003) Cell-cycle arrest in Jurkat leukaemic cells: a possible role for docosahexaenoic acid. Biochem J 371:621–629

    PubMed  CAS  Google Scholar 

  127. Jolly CA, Jiang YH, Chapkin RS, McMurray DN (1997) Dietary [n-3] polyunsaturated fatty acids suppress murine lymphoproliferation, interleukin-2 secretion, and the formation of diacylglycerol and ceramide. J Nutr 127:37–43

    PubMed  CAS  Google Scholar 

  128. McMurray DN, Jolly CA, Chapkin RS (2000) Effects of dietary n-3 fatty acids on T-cell activation and T-cell receptor-mediated signalling in a murine model. J Infect Dis 182:S103–S107

    PubMed  CAS  Google Scholar 

  129. Schley PD, Jijon HB, Robinson LE, Field CJ (2005) Mechanisms of omega-3 fatty acid-induced growth inhibition in MDA-MB-231 human breast cancer cells. Breast Cancer Res Treat 92:187–195

    PubMed  CAS  Google Scholar 

  130. Schley PD, Brindley DN, Field CJ (2007) (n-3) PUFA alter raft lipid composition and decrease epidermal growth factor receptor levels in lipid rafts of human breast cancer cells. J Nutr 137:548–553

    PubMed  CAS  Google Scholar 

  131. Sun H, Berquin IM, Owens RT, O’Flaherty JT, Edwards IJ (2008) Peroxisome proliferator-activated receptor gamma-mediated up-regulation of syndecan-1 by n-3 fatty acids promotes apoptosis of human breast cancer cells. Cancer Res 68:2912–2919

    PubMed  CAS  Google Scholar 

  132. Chen ZY, Istfan NW (2000) Docosahexaenoic acid is a potent inducer of apoptosis in HT-29 colon cancer cells. Prostaglandins Leukot Essent Fat Acids 63:301–308

    CAS  Google Scholar 

  133. Hong MY, Chapkin RS, Barhoumi R, Burghardt RC, Turner ND, Henderson CE et al (2002) Fish oil increases mitochondrial phospholipid unsaturation, upregulating reactive oxygen species and apoptosis in rat colonocytes. Carcinogenesis 23:1919–1925

    PubMed  CAS  Google Scholar 

  134. Narayanan BA, Narayanan NK, Desai D, Pittman B, Reddy BS (2004) Effects of a combination of docosahexaenoic acid and 1,4-phenylene bis(methylene) selenocyanate on cyclooxygenase 2, inducible nitric oxide synthase and beta-catenin pathways in colon cancer cells. Carcinogenesis 25:2443–2449

    PubMed  CAS  Google Scholar 

  135. Trifan OC, Hla T (2003) Cyclooxygenase-2 modulates cellular growth and promotes tumorigenesis. J Cell Mol Med 7:207–222

    PubMed  CAS  Google Scholar 

  136. Hawcroft G, D’Amico M, Albanese C, Markham AF, Pestell RG, Hull MA (2002) Indomethacin induces differential expression of beta-catenin, gamma-catenin and T-cell factor target genes in human colorectal cancer cells. Carcinogenesis 23:107–114

    PubMed  CAS  Google Scholar 

  137. Li H, Liu L, David ML, Whitehead CM, Chen M, Fetter JR et al (2002) Pro-apoptotic actions of exisulind and CP461 in SW480 colon tumor cells involve beta-catenin and cyclin D1 down-regulation. Biochem Pharmacol 64:1325–1336

    PubMed  CAS  Google Scholar 

  138. Jakobsen CH, Størvold GL, Bremseth H, Follestad T, Sand K, Mack M et al (2008) DHA induces ER stress and growth arrest in human colon cancer cells: associations with cholesterol and calcium homeostasis. J Lipid Res 49:2089–2100

    PubMed  CAS  Google Scholar 

  139. Diakogiannaki E, Morgan NG (2008) Differential regulation of the ER stress response by long-chain fatty acids in the pancreatic beta-cell. Biochem Soc Trans 36:959–962

    PubMed  CAS  Google Scholar 

  140. Karaskov E, Scott C, Zhang L, Teodoro T, Ravazzola M, Volchuk A (2006) Chronic palmitate but not oleate exposure induces endoplasmic reticulum stress, which may contribute to INS-1 pancreatic beta-cell apoptosis. Endocrinology 147:3398–3407

    PubMed  CAS  Google Scholar 

  141. Ota T, Gayet C, Ginsberg HN (2008) Inhibition of apolipoprotein B100 secretion by lipid-induced hepatic endoplasmic reticulum stress in rodents. J Clin Invest 118:316–332

    PubMed  CAS  Google Scholar 

  142. Finstad HS, Myhrstad MC, Heimli H, Lømo J, Blomhoff HK, Kolset SO et al (1998) Multiplication and death-type of leukemia cell lines exposed to very long-chain polyunsaturated fatty acids. Leukemia 12:921–929

    PubMed  CAS  Google Scholar 

  143. Finstad HS, Dyrendal H, Myhrstad MC, Heimli H, Drevon CA (2000) Uptake and activation of eicosapentaenoic acid are related to accumulation of triacylglycerol in Ramos cells dying from apoptosis. J Lipid Res 41:554–563

    PubMed  CAS  Google Scholar 

  144. Tanaka Y, Goto K, Matsumoto Y, Ueoka R (2008) Remarkably high inhibitory effects of docosahexaenoic acid incorporated into hybrid liposomes on the growth of tumor cells along with apoptosis. Int J Pharm 359:264–271

    PubMed  CAS  Google Scholar 

  145. Merendino N, Loppi B, D’Aquino M, Molinari R, Pessina G, Romano C et al (2005) Docosahexaenoic acid induces apoptosis in the human PaCa-44 pancreatic cancer cell line by active reduced glutathione extrusion and lipid peroxidation. Nutr Cancer 52:225–233

    PubMed  CAS  Google Scholar 

  146. Edwards IJ, Sun H, Hu Y, Berquin IM, O’Flaherty JT, Cline JM et al (2008) In vivo and in vitro regulation of syndecan 1 in prostate cells by n-3 polyunsaturated fatty acids. J Biol Chem 283:18441–18449

    PubMed  CAS  Google Scholar 

  147. Courtney ED, Matthews S, Finlayson C, Di Pierro D, Belluzzi A, Roda E et al (2007) Eicosapentaenoic acid (EPA) reduces crypt cell proliferation and increases apoptosis in normal colonic mucosa in subjects with a history of colorectal adenomas. Int J Colorectal Dis 22:765–776

    PubMed  CAS  Google Scholar 

  148. Harper CR, Edwards MJ, De Filippis AP, Jacobson TA (2006) Flaxseed oil increases the plasma concentrations of cardioprotective (n-3) fatty acids in humans. J Nutr 136:83–87

    PubMed  CAS  Google Scholar 

  149. Cao J, Schwichtenberg KA, Hanson NQ, Tsai MY (2006) Incorporation and clearance of omega-3 fatty acids in erythrocyte membranes and plasma phospholipids. Clin Chem 52:2265–2272

    PubMed  CAS  Google Scholar 

  150. Elvevoll EO, Barstad H, Breimo ES, Brox J, Eilertsen KE, Lund T et al (2006) Enhanced incorporation of n-3 fatty acids from fish compared with fish oils. Lipids 41:1109–1114

    PubMed  CAS  Google Scholar 

  151. Cremonezzi DC, Díaz MP, Valentich MA, Eynard AR (2004) Neoplastic and preneoplastic lesions induced by melamine in rat urothelium are modulated by dietary polyunsaturated fatty acids. Food Chem Toxicol 42:1999–2007

    PubMed  CAS  Google Scholar 

  152. Latham P, Lund EK, Johnson IT (1999) Dietary n-3 PUFA increases the apoptotic response to 1,2-dimethylhydrazine, reduces mitosis and suppresses the induction of carcinogenesis in the rat colon. Carcinogenesis 20:645–650

    PubMed  CAS  Google Scholar 

  153. Chang WL, Chapkin RS, Lupton JR (1998) Fish oil blocks azoxymethane-induced rat colon tumorigenesis by increasing cell differentiation and apoptosis rather than decreasing cell proliferation. J Nutr 128:491–497

    PubMed  CAS  Google Scholar 

  154. Calviello G, Palozza P, Piccioni E, Maggiano N, Frattucci A, Franceschelli P et al (1998) Dietary supplementation with eicosapentaenoic and docosahexaenoic acid inhibits growth of Morris hepatocarcinoma 3924A in rats: effects on proliferation and apoptosis. Int J Cancer 75:699–705

    PubMed  CAS  Google Scholar 

  155. Vecchini A, Ceccarelli V, Susta F, Caligiana P, Orvietani P, Binaglia L et al (2004) Dietary alpha-linolenic acid reduces COX-2 expression and induces apoptosis of hepatoma cells. J Lipid Res 45:308–316

    PubMed  CAS  Google Scholar 

  156. Calviello G, Palozza P, Di Nicuolo F, Maggiano N, Bartoli GM (2000) n-3 PUFA dietary supplementation inhibits proliferation and store-operated calcium influx in thymoma cells growing in Balb/c mice. J Lipid Res 41:182–189

    PubMed  CAS  Google Scholar 

  157. Connolly JM, Gilhooly EM, Rose DP (1999) Effects of reduced dietary linoleic acid intake, alone or combined with an algal source of docosahexaenoic acid, on MDA-MB-231 breast cancer cell growth and apoptosis in nude mice. Nutr Cancer 35:44–49

    PubMed  CAS  Google Scholar 

  158. Avula CP, Zaman AK, Lawrence R, Fernandes G (1999) Induction of apoptosis and apoptotic mediators in Balb/C splenic lymphocytes by dietary n-3 and n-6 fatty acids. Lipids 34:921–927

    PubMed  CAS  Google Scholar 

  159. Hong MY, Lupton JR, Morris JS, Wang N, Carroll RJ, Davidson LA et al (2000) Dietary fish oil reduces O6-methylguanine DNA adduct levels in rat colon in part by increasing apoptosis during tumor initiation. Cancer Epidemiol Biomarkers Prev 9:819–826

    PubMed  CAS  Google Scholar 

  160. Bancroft LK, Lupton JR, Davidson LA, Taddeo SS, Murphy ME, Carroll RJ et al (2003) Dietary fish oil reduces oxidative DNA damage in rat colonocytes. Free Radic Biol Med 35:149–159

    PubMed  CAS  Google Scholar 

  161. Davidson LA, Nguyen DV, Hokanson RM, Callaway ES, Isett RB, Turner ND et al (2004) Chemopreventive n-3 polyunsaturated fatty acids reprogram genetic signatures during colon cancer initiation and progression in the rat. Cancer Res 64:6797–6804

    PubMed  CAS  Google Scholar 

  162. Cheng J, Ogawa K, Kuriki K, Yokoyama Y, Kamiya T, Seno K et al (2003) Increased intake of n-3 polyunsaturated fatty acids elevates the level of apoptosis in the normal sigmoid colon of patients polypectomized for adenomas/tumors. Cancer Lett 193:17–24

    PubMed  CAS  Google Scholar 

  163. Chapkin RS, Hong MY, Fan YY, Davidson LA, Sanders LM, Henderson CE et al (2002) Dietary n-3 PUFA alter colonocyte mitochondrial membrane composition and function. Lipids 37:193–199

    PubMed  CAS  Google Scholar 

  164. Vanamala J, Glagolenko A, Yang P, Carroll RJ, Murphy ME, Newman RA et al (2008) Dietary fish oil and pectin enhance colonocyte apoptosis in part through suppression of PPARdelta/PGE2 and elevation of PGE3. Carcinogenesis 29:790–796

    PubMed  CAS  Google Scholar 

  165. Jordan A, Stein J (2003) Effect of an omega-3 fatty acid containing lipid emulsion alone and in combination with 5-fluorouracil (5-FU) on growth of the colon cancer cell line Caco-2. Eur J Nutr 42:324–331

    PubMed  CAS  Google Scholar 

  166. Vaculová A, Hofmanová J, Andera L, Kozubík A (2005) TRAIL and docosahexaenoic acid cooperate to induce HT-29 colon cancer cell death. Cancer Lett 229:43–48

    PubMed  Google Scholar 

  167. Siddiqui RA, Zerouga M, Wu M, Castillo A, Harvey K, Zaloga GP et al (2005) Anticancer properties of propofol-docosahexaenoate and propofol eicosapentaenoate on breast cancer cells. Breast Cancer Res 7:R645–R654

    PubMed  CAS  Google Scholar 

  168. Narayanan NK, Narayanan BA, Reddy BS (2005) A combination of docosahexaenoic acid and celecoxib prevents prostate cancer cell growth in vitro and is associated with modulation of nuclear factor-kappaB, and steroid hormone receptors. Int J Oncol 26:785–792

    PubMed  CAS  Google Scholar 

  169. Sturlan S, Baumgartner M, Roth E, Bachleitner-Hofmann T (2003) Docosahexaenoic acid enhances arsenic trioxide-mediated apoptosis in arsenic trioxide-resistant HL-60 cells. Blood 101:4990–4997

    PubMed  CAS  Google Scholar 

  170. Brown M, Bellon M, Nicot C (2007) Emodin and DHA potently increase arsenic trioxide interferon-alpha-induced cell death of HTLV-I-transformed cells by generation of reactive oxygen species and inhibition of Akt and AP-1. Blood 109:1653–1659

    PubMed  CAS  Google Scholar 

  171. de Lima TM, Amarante-Mendes GP, Curi R (2007) Docosahexaenoic acid enhances the toxic effect of imatinib on Bcr-Abl expressing HL-60 cells. Toxicol In Vitro 21:1678–1685

    PubMed  Google Scholar 

  172. Lindskog M, Gleissman H, Ponthan F, Castro J, Kogner P, Johnsen JI (2006) Neuroblastoma cell death in response to docosahexaenoic acid: sensitization to chemotherapy and arsenic-induced oxidative stress. Int J Cancer 118:2584–2593

    PubMed  CAS  Google Scholar 

  173. Baumgartner M, Sturlan S, Roth E, Wessner B, Bachleitner-Hofmann T (2004) Enhancement of arsenic trioxide-mediated apoptosis using docosahexaenoic acid in arsenic trioxide-resistant solid tumor cells. Int J Cancer 112:707–712

    PubMed  CAS  Google Scholar 

  174. Ding WQ, Liu B, Vaught JL, Palmiter RD, Lind SE (2006) Clioquinol and docosahexaenoic acid act synergistically to kill tumor cells. Mol Cancer Ther 5:1864–1872

    PubMed  CAS  Google Scholar 

  175. Biondo PD, Brindley DN, Sawyer MB, Field CJ (2008) The potential for treatment with dietary long-chain polyunsaturated n-3 fatty acids during chemotherapy. J Nutr Biochem 19:787–796

    PubMed  CAS  Google Scholar 

  176. Nakagawa H, Yamamoto D, Kiyozuka Y, Tsuta K, Uemura Y, Hioki K et al (2000) Effects of genistein and synergistic action in combination with eicosapentaenoic acid on the growth of breast cancer cell lines. J Cancer Res Clin Oncol 126:448–454

    PubMed  CAS  Google Scholar 

  177. Yamamoto D, Kiyozuka Y, Adachi Y, Takada H, Hioki K, Tsubura A (1999) Synergistic action of apoptosis induced by eicosapentaenoic acid and TNP-470 on human breast cancer cells. Breast Cancer Res Treat 55:149–160

    PubMed  CAS  Google Scholar 

  178. Kim HJ, Vosseler CA, Weber PC, Erl W (2005) Docosahexaenoic acid induces apoptosis in proliferating human endothelial cells. J Cell Physiol 204:881–888

    PubMed  CAS  Google Scholar 

  179. Diep QN, Touyz RM, Schiffrin EL (2000) Docosahexaenoic acid, a peroxisome proliferator-activated receptor-alpha ligand, induces apoptosis in vascular smooth muscle cells by stimulation of p38 mitogen-activated protein kinase. Hypertension 36:851–855

    PubMed  CAS  Google Scholar 

  180. Wu Y, Tada M, Takahata K, Tomizawa K, Matsui H (2007) Inhibitory effect of polyunsaturated fatty acids on apoptosis induced by etoposide, okadaic acid and AraC in Neuro2a cells. Acta Med Okayama 61:147–152

    PubMed  CAS  Google Scholar 

  181. Hashimoto M, Hossain S, Shimada T, Sugioka K, Yamasaki H, Fujii Y et al (2002) Docosahexaenoic acid provides protection from impairment of learning ability in Alzheimer’s disease model rats. J Neurochem 81:1084–1091

    PubMed  CAS  Google Scholar 

  182. Sarsilmaz M, Songur A, Özyurt H, Kus I, Özen OA, Özyurt B et al (2003) Potential role of dietary ω-3 essential fatty acids on some oxidant/antioxidant parameters in rats’ corpus striatum. Prostaglandins Leukot Essent Fat Acids 69:253–259

    CAS  Google Scholar 

  183. Calon F, Lim GP, Morihara T, Yang F, Ubeda O, Salem N Jr et al (2005) Dietary n-3 polyunsaturated fatty acid depletion activates caspases and decreases NMDA receptors in the brain of a transgenic mouse model of Alzheimer’s disease. Eur J Neurosci 22:617–626

    PubMed  Google Scholar 

  184. Calon F, Lim GP, Yang F, Morihara T, Teter B, Ubeda O et al (2004) Docosahexaenoic acid protects from dendritic pathology in an Alzheimer’s disease mouse model. Neuron 43:633–645

    PubMed  CAS  Google Scholar 

  185. Akbar M, Calderon F, Wen Z, Kim HY (2005) Docosahexaenoic acid: a positive modulator of Akt signaling in neuronal survival. Proc Natl Acad Sci USA 102:10858–10863

    PubMed  CAS  Google Scholar 

  186. Kim HY (2008) Biochemical and biological functions of docosahexaenoic acid in the nervous system: modulation by ethanol. Chem Phys Lipids 153:34–46

    PubMed  CAS  Google Scholar 

  187. Lukiw WJ, Cui JG, Marcheselli VL, Bodker M, Botkjaer A, Gotlinger K et al (2005) A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J Clin Invest 115:2774–2783

    PubMed  CAS  Google Scholar 

  188. Bazan NG (2006) The onset of brain injury and neurodegeneration triggers the synthesis of docosanoid neuroprotective signaling. Cell Mol Neurobiol 26:901–913

    PubMed  CAS  Google Scholar 

  189. Mukherjee PK, Marcheselli VL, Barreiro S, Hu J, Bok D, Bazan NG (2007) Neurotrophins enhance retinal pigment epithelial cell survival through neuroprotectin D1 signaling. Proc Natl Acad Sci USA 104:13152–13157

    PubMed  CAS  Google Scholar 

  190. Sparrow JR, Vollmer-Snarr HR, Zhou J, Jang YP, Jockusch S, Itagaki Y et al (2003) A2E-epoxides damage DNA in retinal pigment epithelial cells. Vitamin E and other antioxidants inhibit A2E-epoxide formation. Biol Chem 278:18207–18213

    CAS  Google Scholar 

  191. Radu RA, Mata NL, Bagla A, Travis GH (2004) Light exposure stimulates formation of A2E oxiranes in a mouse model of Stargardt’s macular degeneration. Proc Natl Acad Sci USA 101:5928–5933

    PubMed  CAS  Google Scholar 

  192. Bui TV, Han Y, Radu RA, Travis GH, Mata NL (2006) Characterization of native retinal fluorophores involved in biosynthesis of A2E and lipofuscin-associated retinopathies. J Biol Chem 281:18112–18119

    PubMed  CAS  Google Scholar 

  193. Cideciyan AV, Aleman TS, Swider M, Schwartz SB, Steinberg JD, Brucker AJ et al (2004) Mutations in ABCA4 result in accumulation of lipofuscin before slowing of the retinoid cycle: a reappraisal of the human disease sequence. Hum Mol Genet 13:525–534

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grant D1 2008 to G.C. from the Catholic University of Sacred Hearth within its program of promotion and diffusion of scientific research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriella Calviello.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serini, S., Piccioni, E., Merendino, N. et al. Dietary polyunsaturated fatty acids as inducers of apoptosis: implications for cancer. Apoptosis 14, 135–152 (2009). https://doi.org/10.1007/s10495-008-0298-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-008-0298-2

Keywords

Navigation