Skip to main content
Log in

Involvement of oxidative stress and caspase 2-mediated intrinsic pathway signaling in age-related increase in muscle cell apoptosis in mice

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Apoptosis has been implicated as a mechanism of loss of muscle cells in normal aging and plays an important role in age-related sarcopenia. To test the hypothesis that caspase 2 and c-Jun NH2-terminal kinase (JNK)-mediated intrinsic pathway signaling contribute to skeletal muscle cell apoptosis in aging, we compared activation of caspase 2 and JNK and the in vivo expression of 4-hydroxynonenal protein adducts (4-HNE), inducible nitric oxide synthase (iNOS), glucose-6-phosphate dehydrogenase (G6PDH), B-cell lymphoma-2 (BCL-2), BAX, and phospho-BCL-2 in gastrocnemius muscles of young (5 months old) and old (25 months old) mice. A distinct age-related increase in 4-HNE and iNOS expression was readily detected in mice. Increased oxidative stress and iNOS induction were further accompanied by a decrease in G6PDH expression, activation of caspase 2 and JNK, and inactivation of BCL-2 through phosphorylation at serine 70, and caspase 9 activation. Regression analysis further revealed that increased muscle cell death in aging was significantly correlated with changes in the levels of these molecules. Taken together, our data indicate that caspase 2 and JNK-mediated intrinsic pathway signaling is one of the mechanisms involved in age-related increase in muscle cell apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dupont-Versteegden EE (2005) Apoptosis in muscle atrophy: relevance to sarcopenia. Exp Gerontol 40:473–481

    Article  PubMed  CAS  Google Scholar 

  2. Pollack M, Phaneuf S, Dirks A, Leeuwenburgh C (2002) The role of apoptosis in the normal aging brain, skeletal muscle, and heart. Ann NY Acad Sci 959:93–107

    PubMed  CAS  Google Scholar 

  3. Marzetti E, Leeuwenburgh C (2006) Skeletal muscle apoptosis, sarcopenia and frailty at old age. Exp Gerontol 41:1234–1238

    Article  PubMed  CAS  Google Scholar 

  4. Song W, Kwak H-B, Lawler JM (2006) Exercise training attenuates age-induced changes in apoptotic signaling in rat skeletal muscle. Antioxid Redox Signal 8:517–528

    Article  PubMed  CAS  Google Scholar 

  5. Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE, Hofer T, Seo AY, Sulivan R, Jobling WA, Morrow JD, Van Remmen H, Sedivy JM, Yamasoba T, Tanokura M, Weindruch R, Leeuwenburgh C, Prolla TA (2005) Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309:481–484

    Article  PubMed  CAS  Google Scholar 

  6. Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483–495

    Article  PubMed  CAS  Google Scholar 

  7. Hsieh C-C, Rosenblatt JI, Papaconstantonou J (2003) Age-associated changes in SAPK/JNK and p38 MAPK signaling in response to the generation of ROS by 3-nitropropionic acid. Mech Ageing Dev 124:733–746

    Article  PubMed  CAS  Google Scholar 

  8. Naderi J, Hung M, Pandey S (2003) Oxidative stress-induced apoptosis in dividing fibroblasts involves activation of p38 MAP kinase and over-expression of Bax: resistance to quiescent cells to oxidative stress. Apoptosis 8:91–100

    Article  PubMed  CAS  Google Scholar 

  9. Chong ZZ, Li F, Maiese K (2005) Oxidative stress in the brain: novel cellular targets that govern survival during neurodegenerative disease. Prog Neurobiol 75:207–246

    Article  PubMed  CAS  Google Scholar 

  10. Ghatan S, Larner S, Kinoshita Y, Hetman M, Patel L, Xia Z, Youle RJ, Morrison RS (2000) p38 MAP kinase mediates Bax translocation in nitric oxide-induced apoptosis in neurons. J Cell Biol 150:335–348

    Article  PubMed  CAS  Google Scholar 

  11. Tamagno E, Robino G, Obbili A, Bardini P, Aragno M, Parola M, Danni O (2003) H2O2 and 4-hydroxynonenal mediate amyloid β-induced neuronal apoptosis by activation JNKs and p38 MAPK. Exp Neurol 180:144–155

    Article  PubMed  CAS  Google Scholar 

  12. Vera Y, Erkkila K, Wang C, Nunez C, Kyttanen S, Lue Y, Dunkel L, Swerdloff RS, Sinha Hikim AP (2006) Involvement of p38 mitogen-activated protein kinase and inducible nitric oxide synthase in apoptotic signaling of murine and human male germ cells after hormone deprivation. Mol Endocrinol 20:1597–1609

    Article  PubMed  CAS  Google Scholar 

  13. Nolan Y, Verker E, Lynch AM, Lynch MA (2003) Evidence that lipopolysaccharide-induced cell death is mediated by accumulation of reactive oxygen species and activation of p38 in rat cortex and hippocampus. Exp Neurol 184:794–804

    Article  PubMed  CAS  Google Scholar 

  14. Kim S-J, Hwang S-G, Shin DY, Kang S-S, Chun J-S (2002) p38 kinase regulates nitric oxide-induced apoptosis of articular chondrocytes by accumulating p53 via NFkB-dependent transcription and stabilization by serine 15 phosphorylation. J Biol Chem 277:33501–33508

    Article  PubMed  CAS  Google Scholar 

  15. Bose C, Bhuvaneswaran C, Udupa K (2005) Age-related alteration in hepatic acyl-COA: cholesterol acyltransferase and its relation to LDL receptor and MAPK. Mech Ageing Dev 126:740–751

    Article  PubMed  CAS  Google Scholar 

  16. Bhat NR, Feinstein DL, Shen Q, Bhat AN (2002) p38 MAPK-mediated transcriptional activation of inducible nitric-oxide synthase in glial cells. Roles of nuclear factors, nuclear factor kappa B, cAMP response element-binding protein, CCAAT/enhancer-binding protein-beta, and activating transcription factor-2. J Biol Chem 277:29584–29592

    Article  PubMed  CAS  Google Scholar 

  17. Lahti A, Sareila O, Kankaanranta H, Moilanen E (2006) Inhibition of p38 mitogen-activated protein kinase enhances c-Jun N-terminal kinase activity: implication in inducible nitric oxide synthase expression. BMC Pharmacol 6:1–12

    Article  CAS  Google Scholar 

  18. Lee VY, McClintock DS, Santore MT, Scott Budinger GR, Chandel NS (2002) Hypoxia sensitizes cells to nitric oxide-induced apoptosis. J Biol Chem 277:16067–16074

    Article  PubMed  CAS  Google Scholar 

  19. Pervin S, Singh R, Chaudhuri G (2003) Nitric oxide-induced Bax integration into the mitochondrial membrane commits MDA-MB cells to apoptosis: essential role of Akt. Cancer Res 63:5470–5479

    PubMed  CAS  Google Scholar 

  20. Liao X, Liu J-M, Du L, Tang A, Shang Y, Wang SQ, Chen L-Y, Chen Q (2006) Nitric oxide signaling in stretch-induced apoptosis of neonatal rat cardiomyocyte. FASEB J 20:E1196–E1204

    Article  CAS  Google Scholar 

  21. Sinha-Hikim I, Braga M, Shen R, Sinha Hikim AP (2007) Involvement of c-Jun NH2-terminal kinase and nitric oxide-mediated mitochondria-dependent intrinsic pathway signaling in cardiotoxin-induced muscle cell death: role of testosterone. Apoptosis 12:1965–1978

    Article  PubMed  CAS  Google Scholar 

  22. Lassus P, Opitz-Araya X, Lazebnik Y (2002) Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 297:1352–1354

    Article  PubMed  CAS  Google Scholar 

  23. Nutt LK, Margolis SS, Jensen M, Herman CE, Dunphy WG, Rathmell JC, Kornbluth S (2005) Metabolic regulation of oocyte cell death through CaMKII-mediated phosphorylation of caspase 2. Cell 123:89–103

    Article  PubMed  CAS  Google Scholar 

  24. Prasad V, Chandele A, Jagtap JC, Kumar S, Shastry P (2006) ROS-triggered caspase 2 activation and feedback amplification loop in β-carotene-induced apoptosis. Free Radic Biol Med 41:431–442

    Article  PubMed  CAS  Google Scholar 

  25. Tu S, McStay GP, Boucher L-M, Mak T, Beere HM, Green DR (2006) In situ trapping of activated initiator caspases reveals a role for caspase 2 in heat shock-induced apoptosis. Nat Cell Biol 8:72–77

    Article  PubMed  CAS  Google Scholar 

  26. Mhaidat NM, Wang Y, Kiejda KA, Zhang XD, Hersey P (2007) Docetaxel-induced apoptosis in melanoma cells is dependent on activation of caspase-2. Mol Cancer Ther 6:752–761

    Article  PubMed  CAS  Google Scholar 

  27. Hanoux V, Pairault C, Bakalska M, Habert R, Livera G (2007) Caspase-2 involvement during ionizing radiation-induced oocyte death in the mouse ovary. Cell Death Differ 14:671–681

    Article  PubMed  CAS  Google Scholar 

  28. Tamm C, Zhivotovsky B, Sandra Ceccatelli S (2008) Caspase-2 activation in neural stem cells undergoing oxidative stress-induced apoptosis. Apoptosis 13:354–363

    Article  PubMed  CAS  Google Scholar 

  29. Panaretakis T, Laane E, Pokrovskaja K, Bjorklund A-C, Moustakas A, Zhivotovsky B, Heyman M, Shoushan MC, Grander D (2005) Doxorubicin requires the sequential activation of caspase 2, protein kinase Cδ, and c-Jun NH(-terminal kinase to induce apoptosis. Mol Biol Cell 16:3821–3831

    Article  PubMed  CAS  Google Scholar 

  30. de Schepper GG, van Noorden CJ, Houtkooper JM (1987) Age-related changes of glucose-6-phosphate dehydrogenase activity in mouse oocytes. Histochem J 19:467–470

    Article  PubMed  Google Scholar 

  31. Boros LG, Cascante M, Lee W-NP (2002) Metabolic profiling of cell growth and death in cancer: applications in drug discovery. Drug Discov Today 7:364–372

    Article  PubMed  CAS  Google Scholar 

  32. Sinha Hikim AP, Rajavashisth TB, Sinha Hikim I, Lue YH, Bonavera JJ, Leung A, Wang C, Swerdloff RS (1997) Significance of apoptosis in the temporal and stage-specific loss of germ cells in the adult rat after gonadotropin deprivation. Biol Reprod 57:1193–1201

    Article  PubMed  CAS  Google Scholar 

  33. Sinha-Hikim I, Cornford M, Gaytan H, Lee ML, Bhasin S (2006) Effects of testosterone supplementation on skeletal muscle fiber hypertrophy and satellite cells in community dwelling, older men. J Clin Endocrinol Metab 91:3024–3033

    Article  PubMed  CAS  Google Scholar 

  34. Ferrini MG, Wang C, Swerdloff RS, Sinha Hikim AP, Rajfer J, Gonzalez-Cadavid NF (2001) Aging-related expression of inducible nitric oxide synthase and cytotoxicity markers in rat hypothalamic regions associated with male reproductive function. Neuroendocrinology 200:1–11

    Article  Google Scholar 

  35. Lukic-Panin V, Kamiya T, Zhang H, Hayashi T, Tsuchiya A, Sehara Y, Deguchi K, Yamashits T, Abe K (2007) Prevention of neuronal damage by calcium channel blockers with antioxidative effects after transient focal ischemia in rats. Brain Res 1176:143–150

    Article  PubMed  CAS  Google Scholar 

  36. Sompol P, Ittara W, Tangpong J, Chen Y, Doubinskaia I, Batinic-Haberle I, Abdul HM, Butterfield DA, St Clair DK (2008) A neuronal model of Alzheimer’s disease: an insight into the mechanisms of oxidative stress-mediated mitochondrial injury. Neuroscience (epub ahead of prirnt)

  37. Siu PM, Pistilli EE, Always SE (2005) Apoptotic responses to hind limb suspension in gastrocnemius muscle from adult and aged rats. Am J Physiol Regul Integr Comp Physiol 289:R1015–R1026

    PubMed  CAS  Google Scholar 

  38. Tuttle S, Stamato T, Perez ML, Biaglow J (2000) Glucose-6-phosphate dehydrogenase and the oxidative pentose phosphate cycle protect cells against apoptosis induced by low doses of ionizing radiation. Radiat Res 153:781–787

    Article  PubMed  CAS  Google Scholar 

  39. Tian WN, Braunstein LD, Apse K, Pang J, Rose M, Tian X, Stanton RC (1999) Importance of glucose-6-phosphate dehydrogenase activity in cell death. Am J Physiol 276:C1121–C1131

    PubMed  CAS  Google Scholar 

  40. Cory S, Adams JM (2002) The BCL2 family: regulators of the cellular life-or-death switch. Nat Rev 2:647–656

    Article  CAS  Google Scholar 

  41. Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219

    Article  PubMed  CAS  Google Scholar 

  42. Halder S, Basu A, Croce CM (1998) Serine-70 is one of the critical sites for drug-induced Bcl-2 phosphorylation in cancer cells. Cancer Res 58:1609–1615

    Google Scholar 

  43. Fan M, Goodwin M, Vu T, Brantley-Finley C, Gaarde WA, Chambers TC (2000) Vinblastine-induced phosphorylation of Bcl-2 and Bcl-XL is mediated by JNK and occurs in parallel with inactivation of the Raf-1/MEK/ERK cascade. J Biol Chem 29:29980–29985

    Article  Google Scholar 

  44. Driks AJ, Leeuwenburgh C (2004) Aging and lifelong calorie restriction result in adaptations of skeletal muscle apoptosis repressor, apoptosis-inducing factor, X-linked inhibitor of apoptosis, caspase 3, and caspase 12. Free Radic Biol Med 36:27–39

    Article  CAS  Google Scholar 

  45. Always SE, Siu PM (2008) Nuclear apoptosis contributes to sarcopenia. Exerc Sport Sci Rev 36:51–57

    Article  Google Scholar 

  46. Bergeron L, Perez GI, Macdonald G, Shi L, Jurisicova A, Varmuza S, Lathman KE, Flaws JA, Salter JCM, Hara H, Moskowitz MA, Li E, Greenberg A, Tilly JL, Yuan J (1998) Defects in regulation of apoptosis in caspase 2-deficient mice. Genes Dev 12:1304–1314

    Article  PubMed  CAS  Google Scholar 

  47. Troy CM, Shelanski ML (2003) Caspase-2 redux. Cell Death Differ 10:101–107

    Article  PubMed  CAS  Google Scholar 

  48. Guicciardi ME, Bronk SF, Werneburg NW, Yin XM, Gores GJ (2005) Bid is upstream of lysosome-mediated caspase 2 activation in tumor necrosis factor alpha-induced hepatocyte apoptosis. Gastroenterology 129:269–284

    Article  PubMed  CAS  Google Scholar 

  49. Zheng S, Turner TT, Lysiak JL (2006) Caspase 2 activity contributes to the initial wave of germ cell apoptosis during the first round of spermatogenesis. Biol Reprod 74:1026–1033

    Article  PubMed  CAS  Google Scholar 

  50. Samraj AK, Sohn D, Schulze-Osthoff K, Schmitz I (2007) Loss of caspase-9 reveals its essential role for caspase-2 activation and mitochondrial membrane depolarization. Mol Biol Cell 18:84–93

    Article  PubMed  CAS  Google Scholar 

  51. Troy CM, Rabacchi SA, Hohl JB, Angelastro JM, Greene LA, Shelanski ML (2001) Death in the balance: alternative participation of the caspase-2 and -9 pathways in neuronal death induced by nerve growth factor deprivation. J Neurosci 21:5007–5016

    PubMed  CAS  Google Scholar 

  52. Takai Y, Matikainen T, Jurisicova A, Kim MR, Trbovich AM, Fujita E, Nakagawa T, Lemmers B, Flavell RA, Hakem R, Momoi T, Yuan J, Tilly JL, Perez GI (2007) Caspase-12 compensates for lack of caspase-2 and caspase-3 in female germ cells. Apoptosis 12:791–800

    Article  PubMed  CAS  Google Scholar 

  53. Zhang Y, Chong E, Herman B (2002) Age-associated increases in the activity of multiple caspases in Fisher 344 rat organs. Exp Gerontol 37:777–789

    Article  PubMed  CAS  Google Scholar 

  54. Shelke RRJ, Leeuwenburgh C (2003) Life-long calorie restriction (CR) increases expression of apoptosis repressor with a caspase recruitment domain (ARC) in the brain. FASEB J 17:494–496

    PubMed  CAS  Google Scholar 

  55. Zhang Y, Padalecki SS, Chaudhuri AR, Waal ED, Goins BA, Grubbs B, Ikeno Y, Richardson A, Mundy GR, Herman B (2007) Caspase-2 deficiency enhances aging-related traits in mice. Mech Ageing Dev 128:213–221

    Article  PubMed  CAS  Google Scholar 

  56. Chauvier D, Lecoeur H, Langonne A, Borgne-Sanchez A, Mariani J, Martinou J-C, Rebouillat D, Jacotot E (2005) Upstream control of apoptosis by caspase-2 in srum deprived primary neurons. Apoptosis 10:1243–1259

    Article  PubMed  CAS  Google Scholar 

  57. Li H, Bergeron L, Cryns V, Pasternack MS, Zhu H, Shi L, Greenberg A, Yuan J (1997) Activation of caspase-2 in apoptosis. J Biol Chem 272:21010–21017

    Article  PubMed  CAS  Google Scholar 

  58. Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara JA, Quaini E, Di Loreto C, Beltrami CA, Krajewski S, Reed JC, Anversa P (1997) Apoptosis in the failing human heart. N Engl J Med 336:1131–1141

    Article  PubMed  CAS  Google Scholar 

  59. Rajah R, Lee K-W, Cohen P (2002) Insulin-like growth factor binding protein 3 mediates tumor necrosis factor-α-induced apoptosis: role of Bcl-2 phosphorylation. Cell Growth Differ 13:163–171

    PubMed  CAS  Google Scholar 

  60. Kaneto H, Matsuoka TA, Katakami N, Kawamori D, Miyatsuka T, Yoshiuchi K, Yasuda T, Sakamoto K, Yamasaki Y, Matsuhisa M (2007) Oxidative stress and the JNK pathway are involved in the development of type 1 and type 2 diabetes. Curr Mol Med 7:674–686

    Article  PubMed  CAS  Google Scholar 

  61. Chen SH, Lin JK, Liu SH, Liang YC, Lin-Shiau SY (2008) Apoptosis of cultured astrocytes induced by the copper and neocuproine complex through oxidative stress and JNK activation. Toxicol Sci 102:138–149

    Article  PubMed  CAS  Google Scholar 

  62. Rutkute K, Karakashian AA, Giltiay NV, Dobierzewska A, Nikolova-Karakashian MN (2007) Aging in rat causes hepatic hyperresponsiveness to interleukin-1 beta which is mediated by neutral sphingomyelinase-2. Hepatology 46:1166–1176

    Article  PubMed  CAS  Google Scholar 

  63. Philpott KL, Facci L (2008) MAP kinase pathways in neuronal cell death. CNS Neurol Disord Drug Targets 7:83–97

    Article  PubMed  CAS  Google Scholar 

  64. Srivastava RK, Mi QS, Hardwick JM, Longo DL (1999) Deletion of loop region of Bcl-2 completely blocks paclitaxel-induced apoptosis. Proc Natl Acad Sci USA 96:3775–3780

    Article  PubMed  CAS  Google Scholar 

  65. Shimada K, Nakamura M, Ishida E, Kishi M, Konishi N (2003) Roles of p38- and c-jun NH2-terminal kinase-mediated pathways in 2-methoxyestradiol-induced p53 induction and apoptosis. Carcinogenesis 24:1067–1075

    Article  PubMed  CAS  Google Scholar 

  66. Muscarella DE, Bloom SE (2007) The contribution of c-Jun N-terminal kinase activation and subsequent Bcl-2 phosphorylation to apoptosis induction in human B-cells is dependent on the mode of action of specific stresses. Toxicol Appl Pharmacol (Epub ahead of print)

Download references

Acknowledgments

This work was supported by a grant from the American Federation of Aging Research (to I.S-H). Additional support was provided by MBRS grant 5 SO6-GM068510 (to I.S-H) and RCMI Clinical Research Infrastructure Initiative grant RR-011145 (to K. Norris) from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indrani Sinha-Hikim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braga, M., Sinha Hikim, A.P., Datta, S. et al. Involvement of oxidative stress and caspase 2-mediated intrinsic pathway signaling in age-related increase in muscle cell apoptosis in mice. Apoptosis 13, 822–832 (2008). https://doi.org/10.1007/s10495-008-0216-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-008-0216-7

Keywords

Navigation