Skip to main content
Log in

Up-regulation of CD95 (Apo-1/Fas) is associated with spermatocyte apoptosis during the first round of spermatogenesis in the rat

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Apoptosis plays a major role in controlling both the rate of sperm production and chromosomal abnormalities in adult male testes. However, little is known on the mechanisms controlling induction and execution of apoptosis under physiological conditions. In this work we have uncovered a major role for the cell death receptor Fas in both the extrinsic and intrinsic pathways in normal germ cell apoptosis. We show here that Fas levels increased significantly in a group of germ cell in 25 d old rats, which were identified as spermatocytes and only a few spermatogonia. In addition, we show that isolated spermatocytes expressing high levels of Fas display activation of caspase-8, -9, -3, -6 and -2, as well as increased levels of intracellular calcium and decreased pH, which coincides with stabilization of p53, and transcriptional activation of PUMA and Fas. Therefore, our data strongly suggests that transcriptional up regulation of Fas could predispose a group of spermatocytes to Fas ligand triggering apoptosis by the extrinsic and intrinsic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Eguchi J, Koji T, Nomata K, Yoshii A, Shin M, Kanetake H (2002) Fas-Fas ligand system as a possible mediator of spermatogenic cell apoptosis in human maturation-arrested testes. Hum Cell 15(1):61–68

    Article  PubMed  Google Scholar 

  2. Francavilla S, D′Abrizio P, Cordeschi G, Pelliccione F, Necozione S, Ulisse S, et al (2002) Fas expression correlates with human germ cell degeneration in meiotic and post-meiotic arrest of spermatogenesis. Mol Hum Reprod 8(3):213–220

    Article  PubMed  CAS  Google Scholar 

  3. Francavilla S, D′Abrizio P, Rucci N, Silvano G, Properzi G, Straface E, et al (2000) Fas and Fas ligand expression in fetal and adult human testis with normal or deranged spermatogenesis. J Clin Endocrinol Metab 85(8):2692–2700

    Article  PubMed  CAS  Google Scholar 

  4. Furuchi T, Masuko K, Nishimune Y, Obinata M, Matsui Y (1996) Inhibition of testicular germ cell apoptosis and differentiation in mice misexpressing Bcl-2 in spermatogonia. Development 122(6):1703–1709

    PubMed  CAS  Google Scholar 

  5. Knudson CM, Tung KS, Tourtellotte WG, Brown GA, Korsmeyer SJ (1995) Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science 270(5233):96–99

    Article  PubMed  CAS  Google Scholar 

  6. Yamamoto CM, Hikim AP, Lue Y, Portugal AM, Guo TB, Hsu SY, et al (2001) Impairment of spermatogenesis in transgenic mice with selective overexpression of Bcl-2 in the somatic cells of the testis. J Androl 22(6):981–991

    PubMed  CAS  Google Scholar 

  7. Lee J, Richburg JH, Shipp EB, Meistrich ML, Boekelheide K (1999) The Fas system, a regulator of testicular germ cell apoptosis, is differentially up-regulated in Sertoli cell versus germ cell injury of the testis. Endocrinology 140(2):852–858

    Article  PubMed  CAS  Google Scholar 

  8. Lee J, Richburg JH, Younkin SC, Boekelheide K (1997) The Fas system is a key regulator of germ cell apoptosis in the testis. Endocrinology 138(5):2081–2088

    Article  PubMed  CAS  Google Scholar 

  9. Pentikainen V, Erkkila K, Dunkel L (1999) Fas regulates germ cell apoptosis in the human testis in vitro. Am J Physiol 276(2 Pt 1):E310–316

    PubMed  CAS  Google Scholar 

  10. Yin Y, Stahl BC, DeWolf WC, Morgentaler A (2002) P53 and Fas are sequential mechanisms of testicular germ cell apoptosis. J Androl 23(1):64–70

    PubMed  CAS  Google Scholar 

  11. Krammer PH (2000) CD95's deadly mission in the immune system. Nature 407(6805):789–795

    Article  PubMed  CAS  Google Scholar 

  12. Henkler F, Behrle E, Dennehy KM, Wicovsky A, Peters N, Warnke C, et al (2005) The extracellular domains of FasL and Fas are sufficient for the formation of supramolecular FasL-Fas clusters of high stability. J Cell Biol 168(7):1087–1098

    Article  PubMed  CAS  Google Scholar 

  13. Sanchez-Gomez MV, Alberdi E, Ibarretxe G, Torre I, Matute C (2003) Caspase-dependent and caspase-independent oligodendrocyte death mediated by AMPA and kainate receptors. J Neurosci 23(29):9519–9528

    PubMed  CAS  Google Scholar 

  14. Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, et al (1998) Two CD95 (APO-1/Fas) signaling pathways. Embo J 17(6):1675–1687

    Article  PubMed  CAS  Google Scholar 

  15. Riedl SJ, Shi Y (2004) Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 5(11):897–907

    Article  PubMed  CAS  Google Scholar 

  16. Budihardjo I, Oliver H, Lutter M, Luo X, Wang X (1999) Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 15:269–290

    Article  PubMed  CAS  Google Scholar 

  17. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407(6805):770–776

    Article  PubMed  CAS  Google Scholar 

  18. Scaffidi C, Schmitz I, Zha J, Korsmeyer SJ, Krammer PH, Peter ME (1999) Differential modulation of apoptosis sensitivity in CD95 type I and type II cells. J Biol Chem 274(32):22532–22538

    Article  PubMed  CAS  Google Scholar 

  19. Moreno RD, Lizama C, Urzua N, Vergara SP, Reyes JG (2006) Caspase activation throughout the first wave of spermatogenesis in the rat. Cell Tissue Res 325(3):533–540

    Google Scholar 

  20. Richburg JH, Nanez A (2003) Fas- or FasL-deficient mice display an increased sensitivity to nitrobenzene-induced testicular germ cell apoptosis. Toxicol Lett 139(1):1–10

    Article  PubMed  CAS  Google Scholar 

  21. Richburg JH, Nanez A, Williams LR, Embree ME, Boekelheide K (2000) Sensitivity of testicular germ cells to toxicant-induced apoptosis in gld mice that express a nonfunctional form of Fas ligand. Endocrinology 141(2):787–793

    Article  PubMed  CAS  Google Scholar 

  22. Chandrasekaran Y, McKee CM, Ye Y, Richburg JH (2006) Influence of TRP53 status on FAS membrane localization, CFLAR (c-FLIP) ubiquitinylation, and sensitivity of GC-2spd (ts) cells to undergo FAS-mediated apoptosis. Biol Reprod 74(3):560–568

    Article  PubMed  CAS  Google Scholar 

  23. Embree-Ku M, Venturini D, Boekelheide K (2002) Fas is involved in the p53-dependent apoptotic response to ionizing radiation in mouse testis. Biol Reprod 66(5):1456–1461

    Article  PubMed  CAS  Google Scholar 

  24. Sinha Hikim AP, Lue Y, Diaz-Romero M, Yen PH, Wang C, Swerdloff RS (2003) Deciphering the pathways of germ cell apoptosis in the testis. J Steroid Biochem Mol Biol 85(2–5):175–182

    Article  PubMed  CAS  Google Scholar 

  25. Chipuk JE, Bouchier-Hayes L, Kuwana T, Newmeyer DD, Green DR (2005) PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science 309(5741):1732–1735

    Article  PubMed  CAS  Google Scholar 

  26. Lu X (2005) p53: a heavily dictated dictator of life and death. Curr Opin Genet Dev 15(1):27–33

    Article  PubMed  CAS  Google Scholar 

  27. Levine AJ, Hu W, Feng Z (2006) The P53 pathway: what questions remain to be explored? Cell Death Differ 13(6):1027–1036

    Article  PubMed  CAS  Google Scholar 

  28. Yu J, Zhang L (2005) The transcriptional targets of p53 in apoptosis control. Biochem Biophys Res Commun 331(3):851–858

    Article  PubMed  CAS  Google Scholar 

  29. Schwartz D, Goldfinger N, Kam Z, Rotter V (1999) p53 controls low DNA damage-dependent premeiotic checkpoint and facilitates DNA repair during spermatogenesis. Cell Growth Differ 10(10):665–675

    PubMed  CAS  Google Scholar 

  30. Sjoblom T, Lahdetie J (1996) Expression of p53 in normal and gamma-irradiated rat testis suggests a role for p53 in meiotic recombination and repair. Oncogene 12(12):2499–2505

    PubMed  CAS  Google Scholar 

  31. Yin Y, Stahl BC, DeWolf WC, Morgentaler A (1998) p53-mediated germ cell quality control in spermatogenesis. Dev Biol 204(1):165–171

    Article  PubMed  CAS  Google Scholar 

  32. Griffith KJ, Chan EK, Lung CC, Hamel JC, Guo X, Miyachi K, et al (1997) Molecular cloning of a novel 97-kd Golgi complex autoantigen associated with Sjogren's syndrome. Arthritis Rheum 40(9):1693–1702

    Article  PubMed  CAS  Google Scholar 

  33. Ding HF, Lin YL, McGill G, Juo P, Zhu H, Blenis J, et al (2000) Essential role for caspase-8 in transcription-independent apoptosis triggered by p53. J Biol Chem 275(49):38905–38911

    Article  PubMed  CAS  Google Scholar 

  34. Bright GR, Whitaker JE, Haugland RP, Taylor DL (1989) Heterogeneity of the changes in cytoplasmic pH upon serum stimulation of quiescent fibroblasts. J Cell Physiol 141(2):410–419

    Article  PubMed  CAS  Google Scholar 

  35. Rink TJ, Tsien RY, Pozzan T (1982) Cytoplasmic pH and free Mg2+ in lymphocytes. J Cell Biol 95(1):189–196

    Article  PubMed  CAS  Google Scholar 

  36. Kao JP, Harootunian AT, Tsien RY (1989) Photochemically generated cytosolic calcium pulses and their detection by fluo-3. J Biol Chem 264(14):8179–8184

    PubMed  CAS  Google Scholar 

  37. Sun XY, Li FX, Li J, Tan YF, Piao YS, Tang S, et al (2004) Determination of genes involved in the early process of embryonic implantation in rhesus monkey (Macaca mulatta) by suppression subtractive hybridization. Biol Reprod 70(5):1365–1373

    Article  PubMed  CAS  Google Scholar 

  38. Yamauchi H, Katayama K, Ueno M, Uetsuka K, Nakayama H, Doi K (2004) Involvement of p53 in 1-beta-D-arabinofuranosylcytosine-induced rat fetal brain lesions. Neurotoxicol Teratol 26(4):579–586

    Article  PubMed  CAS  Google Scholar 

  39. Sokal RR (1995) Biometry: the principles and practice of statistic in biological research. W. H. Freeman, New York, p 887

    Google Scholar 

  40. Mishra DP, Shaha C (2005) Estrogen-induced spermatogenic cell apoptosis occurs via the mitochondrial pathway: role of superoxide and nitric oxide. J Biol Chem 280(7):6181–6196

    Article  PubMed  CAS  Google Scholar 

  41. Nair R, Shaha C (2003) Diethylstilbestrol induces rat spermatogenic cell apoptosis in vivo through increased expression of spermatogenic cell Fas/FasL system. J Biol Chem 278(8):6470–6481

    Article  PubMed  CAS  Google Scholar 

  42. Richburg JH (2000) The relevance of spontaneous- and chemically-induced alterations in testicular germ cell apoptosis to toxicology. Toxicol Lett 112–113:79–86

    Article  PubMed  Google Scholar 

  43. Richburg JH, Nanez A, Gao H (1999) Participation of the Fas-signaling system in the initiation of germ cell apoptosis in young rat testes after exposure to mono-(2-ethylhexyl) phthalate. Toxicol Appl Pharmacol 160(3):271–278

    Article  PubMed  CAS  Google Scholar 

  44. Boulogne B, Olaso R, Levacher C, Durand P, Habert R (1999) Apoptosis and mitosis in gonocytes of the rat testis during foetal and neonatal development. Int J Androl 22(6):356–365

    Article  PubMed  CAS  Google Scholar 

  45. Rodriguez I, Ody C, Araki K, Garcia I, Vassalli P (1997) An early and massive wave of germinal cell apoptosis is required for the development of functional spermatogenesis. Embo J 16(9):2262–2270

    Article  PubMed  CAS  Google Scholar 

  46. Zheng S, Turner TT, Lysiak JJ (2006) Caspase 2 activity contributes to the initial wave of germ cell apoptosis during the first round of spermatogenesis. Biol Reprod 74(6):1026–1033

    Article  PubMed  CAS  Google Scholar 

  47. Boekelheide K, Lee J, Shipp EB, Richburg JH, Li G (1998) Expression of Fas system-related genes in the testis during development and after toxicant exposure. Toxicol Lett 102–103:503–508

    Article  PubMed  Google Scholar 

  48. Grataroli R, Vindrieux D, Gougeon A, Benahmed M (2002) Expression of tumor necrosis factor-alpha-related apoptosis-inducing ligand and its receptors in rat testis during development. Biol Reprod 66(6):1707–1715

    Article  PubMed  CAS  Google Scholar 

  49. Suominen JS, Wang Y, Kaipia A, Toppari J (2004) Tumor necrosis factor-alpha (TNF-alpha) promotes cell survival during spermatogenesis, and this effect can be blocked by infliximab, a TNF-alpha antagonist. Eur J Endocrinol 151(5):629–640

    Article  PubMed  CAS  Google Scholar 

  50. Jimbo A, Fujita E, Kouroku Y, Ohnishi J, Inohara N, Kuida K, et al (2003) ER stress induces caspase-8 activation, stimulating cytochrome c release and caspase-9 activation. Exp Cell Res 283(2):156–166

    Article  PubMed  CAS  Google Scholar 

  51. Chan SW, Hegyi L, Scott S, Cary NR, Weissberg PL, Bennett MR (2000) Sensitivity to Fas-mediated apoptosis is determined below receptor level in human vascular smooth muscle cells. Circ Res 86(10):1038–1046

    PubMed  CAS  Google Scholar 

  52. Bentele M, Lavrik I, Ulrich M, Stosser S, Heermann DW, Kalthoff H, et al (2004) Mathematical modeling reveals threshold mechanism in CD95-induced apoptosis. J Cell Biol 166(6):839–851

    Article  PubMed  CAS  Google Scholar 

  53. Zhivotovsky B, Orrenius S (2005) Caspase-2 function in response to DNA damage. Biochem Biophys Res Commun 331(3):859–867

    Article  PubMed  CAS  Google Scholar 

  54. Tinel A, Tschopp J (2004) The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress. Science 304(5672):843–846

    Article  PubMed  CAS  Google Scholar 

  55. Bergeron L, Perez GI, Macdonald G, Shi L, Sun Y, Jurisicova A, et al (1998) Defects in regulation of apoptosis in caspase-2-deficient mice. Genes Dev 12(9):1304–1314

    PubMed  CAS  Google Scholar 

  56. Allemand I, Anglo A, Jeantet AY, Cerutti I, May E (1999) Testicular wild-type p53 expression in transgenic mice induces spermiogenesis alterations ranging from differentiation defects to apoptosis. Oncogene 18(47):6521–6530

    Article  PubMed  CAS  Google Scholar 

  57. Beumer TL, Roepers-Gajadien HL, Gademan IS, van Buul PP, Gil-Gomez G, Rutgers DH, et al (1998) The role of the tumor suppressor p53 in spermatogenesis. Cell Death Differ 5(8):669–677

    Article  PubMed  CAS  Google Scholar 

  58. Fujisawa M, Shirakawa T, Fujioka H, Gotoh A, Okada H, Arakawa S, et al (2001) Adenovirus-mediated p53 gene transfer to rat testis impairs spermatogenesis. Arch Androl 46(3):223–231

    Article  PubMed  CAS  Google Scholar 

  59. Kilinc F, Guvel S, Kayaselcuk F, Aygun C, Egilmez T, Ozkardes H (2004) p53 expression and apoptosis in varicocele in the rat testis. J Urol 172(6 Pt 1):2475–2478

    Article  PubMed  CAS  Google Scholar 

  60. Irminger-Finger I, Busquets S, Calabrio F, Lopez-Soriano FJ, Argiles JM (2006) BARD1 content correlates with increased DNA fragmentation associated with muscle wasting in tumour-bearing rats. Oncol Rep 15(6):1425–1428

    PubMed  CAS  Google Scholar 

  61. Fabbro M, Savage K, Hobson K, Deans AJ, Powell SN, McArthur GA, et al (2004) BRCA1-BARD1 complexes are required for p53Ser-15 phosphorylation and a G1/S arrest following ionizing radiation-induced DNA damage. J Biol Chem 279(30):31251–31258

    Article  PubMed  CAS  Google Scholar 

  62. Feki A, Jefford CE, Durand P, Harb J, Lucas H, Krause KH, et al (2004) BARD1 expression during spermatogenesis is associated with apoptosis and hormonally regulated. Biol Reprod 71(5):1614–1624

    Article  PubMed  CAS  Google Scholar 

  63. Liu Z, Lu H, Shi H, Du Y, Yu J, Gu S, et al (2005) PUMA overexpression induces reactive oxygen species generation and proteasome-mediated stathmin degradation in colorectal cancer cells. Cancer Res 65(5):1647–1654

    Article  PubMed  CAS  Google Scholar 

  64. Luo X, He Q, Huang Y, Sheikh MS (2005) Transcriptional upregulation of PUMA modulates endoplasmic reticulum calcium pool depletion-induced apoptosis via Bax activation. Cell Death Differ 12(10):1310–1318

    Article  PubMed  CAS  Google Scholar 

  65. Scoltock AB, Bortner CD, St JBG, Putney JW Jr, Cidlowski JA (2000) A selective requirement for elevated calcium in DNA degradation, but not early events in anti-Fas-induced apoptosis. J Biol Chem 275(39):30586–30596

    Article  PubMed  CAS  Google Scholar 

  66. Sharma M, Sahu K, Dube A, Gupta PK (2005) Extracellular pH influences the mode of cell death in human colon adenocarcinoma cells subjected to photodynamic treatment with chlorin p6. J Photochem Photobiol B 81(2): 107–113

    Article  PubMed  CAS  Google Scholar 

  67. Collins MK, Furlong IJ, Malde P, Ascaso R, Oliver J, Lopez Rivas A (1996) An apoptotic endonuclease activated either by decreasing pH or by increasing calcium. J Cell Sci 109(Pt 9): 2393–2399

    PubMed  CAS  Google Scholar 

  68. Vera Y, Diaz-Romero M, Rodriguez S, Lue Y, Wang C, Swerdloff RS, et al (2004) Mitochondria-dependent pathway is involved in heat-induced male germ cell death: lessons from mutant mice. Biol Reprod 70(5):1534–1540

    Article  PubMed  CAS  Google Scholar 

  69. Vera Y, Rodriguez S, Castanares M, Lue Y, Atienza V, Wang C, et al (2005) Functional role of caspases in heat-induced testicular germ cell apoptosis. Biol Reprod 72(3):516–522

    Article  PubMed  CAS  Google Scholar 

  70. Coureuil M, Fouchet P, Prat M, Letallec B, Barroca V, Dos Santos C, et al (2006) Caspase-independent death of meiotic and postmeiotic cells overexpressing p53: calpain involvement. Cell Death Differ

  71. Leist M, Jaattela M (2001) Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2(8):589–598

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financed by a grant from FONDECYT (1040800). C.L and I.A. are PhD fellows from the National Commission for Scientific Research and Technology (FONDECYT 1040800). We thank Mrs Connie Mefalle for her excellent assistance in English grammar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo D. Moreno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lizama, C., Alfaro, I., Reyes, J.G. et al. Up-regulation of CD95 (Apo-1/Fas) is associated with spermatocyte apoptosis during the first round of spermatogenesis in the rat. Apoptosis 12, 499–512 (2007). https://doi.org/10.1007/s10495-006-0012-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-0012-1

Keywords

Navigation