Skip to main content
Log in

Potential geographical distribution of the red palm mite in South America

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

Among pests that have recently been introduced into the Americas, the red palm mite, Raoiella indica Hirst (Prostigmata: Tenuipalpidae), is the most invasive. This mite has spread rapidly to several Caribbean countries, United States of America, Mexico, Venezuela, Colombia and Brazil. The potential dispersion of R. indica to other regions of South America could seriously impact the cultivation of coconuts, bananas, exotic and native palms and tropical flowers such as the Heliconiaceae. To facilitate the development of efficacious R. indica management techniques such as the adoption of phytosanitary measures to prevent or delay the dispersion of this pest, the objective of this paper was to estimate the potential geographical distribution of R. indica in South America using a maximum entropy model. The R. indica occurrence data used in this model were obtained from extant literature, online databases and field sampling data. The model predicted potential suitable areas for R. indica in northern Colombia, central and northern Venezuela, Guyana, Suriname, east French Guiana and many parts of Brazil, including Roraima, the eastern Amazonas, northern Pará, Amapá and the coastal zones, from Pará to north of Rio de Janeiro. These results indicate the potential for significant R. indica related economic and social impacts in all of these countries, particularly in Brazil, because the suitable habitat regions overlap with agricultural areas for R. indica host plants such as coconuts and bananas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson RP, Martinez-Meyer E (2004) Modeling species’ geographic distributions for preliminary conservation assessments: an implementation with the spiny pocket mice (Heteromys) of Ecuador. Biol Conserv 116:167–179

    Article  Google Scholar 

  • Anderson RP, Peterson AT, Gómez-Laverde M (2002) Using niche-based GIS modeling to test geographic predictions of competitive exclusion and competitive release in South American pocket mice. Oikos 93:3–16

    Article  Google Scholar 

  • Anderson RP, Lew D, Peterson AT (2003) Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecol Model 162:211–232

    Article  Google Scholar 

  • Arbabi M, Khiaban NGZ, Askari M (2002) Plant mite fauna of Sistan-Baluchestan and Hormozgan Provinces. J Entomol Soc Iran 22:87–88

    Google Scholar 

  • Baldwin RA (2009) Use of maximum entropy modelling in wildlife research. Entropy 11:854–866

    Article  Google Scholar 

  • Barry S, Elith J (2006) Error and uncertainty in habitat models. J Appl Ecol 43:413–423

    Article  Google Scholar 

  • Benito BM, Martınez-Ortega MM, Munoz LM, Lorite J, Penas J (2009) Assessing extinction-risk of endangered plants using species distribution models: a case study of habitat depletion caused by the spread of greenhouses. Biodivers Conserv. doi:10.1007/s10531-009-9604-8

    Google Scholar 

  • Berg A, Gärdenfors U, von Proschwitz T (2004) Logistic regression models for predicting occurrence of terrestrial mollusks in southern Sweden: importance of environmental data quality and model complexity. Ecography 27:83–93

    Article  Google Scholar 

  • Blumberg D (2008) Date palm arthropod pests and their management in Israel. Phytoparas 36(5):411–448

    Google Scholar 

  • Busby JR (1991) BIOCLIM—a bioclimatic analysis and prediction system. In: Margules CR, Austin MP (eds) Nature conservation: cost effective biological surveys and data analysis. CSIRO, Canberra, pp 64–68

    Google Scholar 

  • CABI (2012) Raoiella indica (red palm mite). Invasive Pest Compend. http://www.cabi.org/isc/?compid=5&dsid=46792&loadmodule=datasheet&page=481&site=144. Accessed 30 July 2012

  • CAPS/FFD (2008) Red palm mite, Raoiella indica Hirst, survey in Southern Florida map. http://www.fws.gov/floridapanther/exotics/documents/2008/RPMBaseMap.pdf. Accessed 30 July 2012

  • Carrillo D, Peña JE (2011) Prey-stage preferences and functional and numerical responses of Amblyseius largoensis (Acari: Phytoseiidae) to Raoiella indica (Acari: Tenuipalpidae). Exp Appl Acarol. doi:10.1007/s10493-011-9488-7

    Google Scholar 

  • Carrillo D, Peña JEP, Hoy MA, Frank JH (2010) Development and reproduction of Amblyseius largoensis (Acari: Phytoseiidae) feeding on pollen, Raoiella indica (Acari: Tenuipalpidae), and other microarthropods inhabiting coconuts in Florida, USA. Exp Appl Acarol 52:119–129

    Article  PubMed  Google Scholar 

  • Carrillo D, de Coss ME, Hoy MA, Peña JE (2011a) Variability in response of four populations of Amblyseius largoensis (Acari: Phytoseiidae) to Raoiella indica (Acari: Tenuipalpidae) and Tetranychus gloveri (Acari: Tetranychidae) eggs and larvae. Biol Control. doi:10.1016/j.biocontrol.2011.09.002

    Google Scholar 

  • Carrillo D, Navia D, Ferragut F, Pena JE (2011b) First report of Raoiella indica (Acari: Tenuipalpidae) in Colombia. Fla Entomol 94:370

    Article  Google Scholar 

  • Carrillo D, Frank JH, Rodrigues JCV, Peña JEP (2012) A review of the natural enemies of the red palm mite, Raoiella indica (Acari: Tenuipalpidae). Exp Appl Acarol. doi:10.1007/s10493-011-9499-4

    Google Scholar 

  • Cocco A, Hoy MA (2009) Feeding, reproduction, and development of the red palm mite (Acari: Tenuipalpidae) on selected palms and banana cultivars in quarantine. Fla Entomol 92:276–291

    Google Scholar 

  • Corsi F, Dupré E, Boitani L (1999) A large-scale model of wolf distribution in Italy for conservation planning. Conserv Biol 13:150–159

    Article  Google Scholar 

  • Dowling APG, Ochoa R, Beard JJ, Welbourn WC, Ueckermann EA (2012) Phylogenetic investigation of the genus Raoiella (Prostigmata: Tenuipalpidae): diversity, distribution, and world invasions. Exp Appl Acarol 57:257–269

    Article  PubMed  CAS  Google Scholar 

  • Duncan RE, Carrillo D, Peña JE (2010) Population dynamics of the red palm mite, Raoiella indica (Acari: Tenuipalpidae), in Florida, USA. In: de Moraes GJ, Castilho RC, Flechtmann CHW (eds) Abstract book: XIII international congress of acarology, 23–27 August 2010. Recife-PE, Brazil, p 74

  • Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberon J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Engler R, Guisan A, Rechsteiner L (2004) An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. J Appl Ecol 41:263–274

    Article  Google Scholar 

  • EPPO (2012) PQR–EPPO database on quarantine pests. http://www.eppo.int. Accessed 30 July 2012

  • Estrada-Venegas E, Martinez-Morales H, Villa-Castillo J (2010) Raoiella indica Hirst (Acari: Tenuipalpidae): first record and threat in Mexico. In: de Moraes GJ, Castilho RC, Flechtmann CHW (eds) Abstract book: XIII international congress of acarology, 23–27 August 2010. Recife-PE, Brazil, p 77

  • Etienne J, Fletchmann CHW (2006) First record of Raoiella indica (Hirst, 1924) (Acari: Tenuipalpidae) in Guadeloupe and Saint Martin, West Indies. Int J Acarol 32:331–332

    Article  Google Scholar 

  • FAO (2011) World production. http://faostat.fao.org/site/339/default.aspx. Accessed 30 July 2012

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Article  Google Scholar 

  • Flechtmann CHW, Etienne J (2004) The red palm mite, Raoiella indica Hirst, a threat to palms in the Americas (Acari: Prostigmata: Tenuipalpidae). Syst Appl Acarol 9:109–1104

    Google Scholar 

  • Franklin J (1995) Predictive vegetation mapping: geographical modeling of biospatial patterns in relation to environmental gradients. Prog Phys Geogr 19:474–499

    Article  Google Scholar 

  • Gerson U, Venezian A, Blumberg D (1983) Phytophagous mites on date palms in Israel. Fruits 38:133–135

    Google Scholar 

  • Graham CH, Hijmans RJ (2006) A comparison of methods for mapping species ranges and species richness. Glob Ecol Biogeogr 15:578

    Article  Google Scholar 

  • Graham CH, Ferrier S, Huettman F, Moritz C, Peterson AT (2004) New developments in museum-based informatics and applications in biodiversity analysis. Trends Ecol Evol 19(9):497–503

    Article  PubMed  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Article  Google Scholar 

  • Guisan A, Edwards TC Jr, Hastie T (2002) Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol Model 157:89–100

    Article  Google Scholar 

  • Hastie T, Tibshirani R, Friedman JH (2009) The elements of statistical learning: data mining, inference, and prediction, second edition, 2nd edn. Springer, New York

    Google Scholar 

  • Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29:773–785

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hirst S (1924) On some new species of red spider. Ann Mag Nat Hist 14:522–527

    Google Scholar 

  • Hope AG, Waltari E, Dokuchaev N, Abramov S, Dupal T, Tsvetkova A, MacDonald SO, Henttonen H, Cook JA (2010) High-latitude diversification within Eurasian least shrews and Alaska tiny shrews (Soricidae). J Mammal 91:1041–1057

    Article  Google Scholar 

  • Hoy MA (2012) Overview of a classical biological control project directed against the red palm mite in Florida. Exp Appl Acarol. doi:10.1007/s10493-012-9537-x

    Google Scholar 

  • Hutchinson GE (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–427

    Article  Google Scholar 

  • Hutchinson GE (1978) An introduction to population ecology. Yale University Press, New Haven

    Google Scholar 

  • IBGE (2012) Produção Agrícola Municipal. http://www.sidra.ibge.gov.br/. Accessed 30 July 2012

  • Kamali K, Ostovan H, Atamehr A (2001) A catalog of mites and ticks (Acari) of Iran. Islamic Azad University Scientific Publication Center, Tehran, p 192

    Google Scholar 

  • Kane EC, Ochoa R, Erbe EF (2005) Raoiella indica Hist (Acari: enuipalpidae): an island-hopping mite pest in the Caribbean. Abstract. In: ESA meeting, Fort Lauderdale, December, 2005

  • Kapur AP (1961) A new species of Stethorus Weise S. keralicus (Coleoptera-Coccinellidae), feeding on arecanut palm mites Raoiella indica Hirst in Kerala, southern India. Entomophaga 6:35–38

    Article  Google Scholar 

  • Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the fourteenth international joint conference on artificial intelligence, San Mateo, CA, USA, pp 1137–1143

  • Manel S, Williams HC, Ormerod SJ (2001) Evaluating presence/absence models in ecology: the need to account for prevalence. J Appl Ecol 38:921–931

    Article  Google Scholar 

  • Mendonça RS, Navia D, Flechtmann CHW (2005) Raoiella indica Hirst (Prostigmata: Tenuipalpidae), o ácaro vermelho das palmeras—uma ameaça para as Américas. Embrapa Recursos Genéticos e Biotecnologia, Brasília, p40 (Documentos/Embrapa Recursos Genéticos e Biotecnologia, 0102–0110, 146)

  • Moisen GG, Frescino TS (2002) Comparing five modeling techniques for predicting forest characteristics. Ecol Model 157:209–225

    Article  Google Scholar 

  • Moutia LA (1958) Contribution to the study of some phytophagous acarina and their predators in Mauritius. Bull Entomol Res 49:59–75

    Article  Google Scholar 

  • Murienne J, Guilbert E, Grandcolas P (2009) Species’ diversity in the New Caledonian endemic genera Cephalidiosus and Nobarnus (Insecta: Heteroptera: Tingidae), an approach using phylogeny and species’ distribution modelling. Bot J Linn Soc 97:177–184

    Article  Google Scholar 

  • Nagesha-Chandra BK, Channabasavanna GP (1983) Studies on seasonal fluctuation of the population of Raoiella indica (Acari: Tenuipalpidae) on coconut with reference to weather parameters. Indian J Acarol 8:104–111

    Google Scholar 

  • NAPPO (2009) Phytosanitary alert system: detection of the red palm mite (Raoiella indica) in Cancun and Isla Mujeres, Quintana Roo, Mexico. North American Plant Protection Organization. http://www.pestalert.org/oprDetail.cfm?oprID=406. Accessed 30 July 2012

  • Navia D, Marsaro AL Jr, da Silva FR, Gondim MGC Jr, de Moraes GJ (2011) First report of the red palm mite, Raoiella indica Hirst (Acari: Tenuipalpidae), in Brazil. Neotrop Entomol 40:409–411

    Article  PubMed  CAS  Google Scholar 

  • Navia D, Morais EGF, Mendonça RS, Gondim MGC Jr (2012) Ácaro-vermelho-das-palmeiras, Raoiella indica Hirst (Prostigmata: Tenuipalpidae). In: Zucchi RA, Vilela E (eds) Pragas Introduzidas: Insetos e Ácaros, 2nd edn. FEALQ, São Paulo

    Google Scholar 

  • Nix HA (1986) A biogeographic analysis of Australian Elapid snakes. Aust Flora Fauna Ser 8:4–15

    Google Scholar 

  • Ortega-Huerta MA, Peterson AT (2008) Modeling ecological niches and predicting geographic distributions: a test of six presence-only methods. Rev Mex Biodivers 79:205–216

    Google Scholar 

  • Papes M, Gaubert P (2007) Modelling ecological niches from low numbers of occurrences: assessment of the conservation status of poorly known viverrids Mammalia, Carnivora) across two continents. Divers Distrib 13:890–902

    Article  Google Scholar 

  • Pearce JL, Boyce MS (2006) Modelling distribution and abundance with presence-only data. J Appl Ecol 43(3):405–412

    Article  Google Scholar 

  • Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102–117

    Article  Google Scholar 

  • Peña JE, Rodrigues JCV, Roda A, Carrillo D, Osborne LS (2009) Predator-prey dynamics and strategies for control of the red palm mite (Raoiella indica) (Acari: Tenuipalpidae) in areas of invasion in the Neotropics. In: Proceedings of the 2nd meeting of IOBC/WPRS, work group integrated control of plant feeding mites. Florence, Italy, 9–12 March 2009, pp 69–79

  • Peterson AT, Shaw J (2003) Lutzomyia vectors for cutaneous leishmaniasis in southern Brazil: ecological niche models, predicted geographic distribution, and climate change effects. Int J Parasitol 33:919–931

    Article  PubMed  Google Scholar 

  • Peterson AT, Soberon J, Sanchez-Cordero V (1999) Conservatism of ecological niches in evolutionary time. Science 285:1265–1267

    Article  PubMed  CAS  Google Scholar 

  • Phillips SJ, Dudik M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Phillips SJ, Dudik M, Schapire RE (2012) A brief tutorial on Maxent. AT&T Labs-Research, Princeton University, and the Center for Biodiversity and Conservation, American Museum of Natural History. http://www.cs.princeton.edu/~schapire/maxent/. Accessed on 30 July 2012

  • Ponder WF, Carter GA, Flemons P, Chapman RR (2001) Evaluation of museum collection data for use in biodiversity assessment. Conserv Biol 15:648–657

    Article  Google Scholar 

  • Pritchard AE, Baker EW (1958) The false spider mite (Acarina: Tenuipalpidae). Univ Calif Publ Entomol 14:175–274

    Google Scholar 

  • Pulliam HR (2000) On the relationship between niche and distribution. Ecol Lett 3:349–361

    Article  Google Scholar 

  • Rodrigues JCV, Antony LMK (2011) First report of Raoiella indica (Acari: Tenuipalpidae) in Amazonas State, Brazil. Fla Entomol 94:1073–1074

    Article  Google Scholar 

  • Rodrigues JCV, Irish BM (2011) Effect of coconut palm proximities and Musa spp. germplasm resistance to colonization by Raoiella indica (Acari: Tenuipalpidae). Exp Appl Acarol. doi:10.1007/s10493-011-9484-y

    Google Scholar 

  • Rodrigues JCV, Peña JE (2012) Chemical control of the red palm mite, Raoiella indica (Acari: Tenuipalpidae) in banana and coconut. Exp Appl Acarol. doi:10.1007/s10493-011-9493-x

    Google Scholar 

  • Rodrigues JCV, Ochoa R, Kane EC (2007) First report of Raoiella indica Hirst (Acari: Tenuipalpidae) and its damage to coconut palms in Puerto Rico and Culebra Island. Int J Acarol 33(1):3–5

    Article  Google Scholar 

  • Santana PE de la T, González AS, González AI (2010) Presencia del ácaro Raoiella indica Hirst (Acari: Tenuipalpidae) en Cuba. Rev Prot Veg 25:1–4

    Google Scholar 

  • Sarkar PK, Somchoudhury AK (1989) Influence of major abiotic factors on the seasonal incidence of Raoiella indica and Tetranychus fijiensis on coconut. In: Channabasavanna GP, Viraktamath CA (eds) Progress in acarology, vol 2. Oxford and IBH, New Delhi, pp 60–65

    Google Scholar 

  • Sayed MT (1942) Contribution to the knowledge of the Acarina of Egypt: I. The genus Raoiella Hirst (Pseudotetranychidae–Tetranychidae). Bull Soc Fouad Entomol 26:81–84

    Google Scholar 

  • Scott JM, Heglund PJ, Morrison ML, Haufler JB, Raphael MG, Wall WA, Samson FB (eds) (2002) Predicting species occurrences: issues of accuracy and scale. Island Press, Washington, DC

    Google Scholar 

  • Sérgio C, Figueira R, Draper D, Menezes R, Sousa AJ (2007) Modelling bryophyte distribution based on ecological information for extent of occurrence assessment. Biol Conserv 135(3):341–351

    Article  Google Scholar 

  • Sillero N, Barbosa AM, Martínez-Freiría F, Real R (2010) Los modelos de nicho ecológico en la herpetología ibérica: pasado, presente y futuro. Boletín de la Asociación Herpetológica Española 21:2–24

    Google Scholar 

  • Soberón J (1999) Linking biodiversity information sources. Trends Ecol Evol 14(7):291

    Article  PubMed  Google Scholar 

  • Stockwell DRB, Peters DP (1999) The GARP modelling system: problems and solutions to automated spatial prediction. Int J Geogr Inf Syst 13:143–158

    Article  Google Scholar 

  • Taylor B, Rahman PM, Murphy ST, Sudheendrakumar VV (2011) Within-season dynamics of red palm mite (Raoiella indica) and phytoseiid predators on two host palm species in south-west India. Exp Appl Acarol. doi:10.1007/s10493-011-9482-0

    PubMed  Google Scholar 

  • Vásquez C, Quirós MG, Aponte O, Sandoval DMF (2008) First report of Raoiella indica Hirst (Acari: Tenuipalpidae) in South America. Neotrop Entomol 37:739–740

    Article  PubMed  Google Scholar 

  • Welbourn C (2006) Pest alert: red palm mite Raoiella indica Hirst (Acari: Tenuipalpidae). Florida Department of Agriculture and Consumer Services. http://www.freshfromflorida.com/pi/pest-alerts/raoiella-indica.html. Accessed 30 July 2012)

  • Welk E, Schubert K, Hoffmann MH (2002) Present and potential distribution of invasive mustard (Alliara petiolata) in North America. Divers Distrib 8:219–233

    Article  Google Scholar 

  • Wisz MS, Guisan A (2009) Do pseudo-absence selection strategies influence species distribution models and their predictions? An information-theoretic approach based on simulated data. _. BMC Ecol 9:8

    Article  PubMed  Google Scholar 

  • Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A, NCEAS Predicting Species Distributions Working Group (2008) Effects of sample size on the performance of species distribution models. Divers Distrib 14:763–773

    Article  Google Scholar 

  • Yadavbabu RK, Manjunatha M (2007) Seasonal incidence of mite population in arecanut. Karnataka J Agric Sci 20:401–402

    Google Scholar 

  • Yom-Tov Y, Kadmon R (1998) Analysis of the distribution of insectivorous bats in Israel. Divers Distrib 4:63–70

    Article  Google Scholar 

  • Yost AC, Petersen SL, Gregg M, Miller R (2008) Predictive modeling and mapping sage grouse (Centrocercus urophasianus) nesting habitat using maximum entropy and a long-term dataset from Southern Oregon. Ecol Inform 3:375–386

    Article  Google Scholar 

  • Zaniewski AE, Lehman A, Overton JM (2002) Predicting species spatial distributions using presence-only data: a case study of native New Zealand ferns. Ecol Model 157:261–280

    Article  Google Scholar 

  • Zouba A, Raeesi A (2010) First report of Raoiella indica Hirst (Acari: Tenuipalpidae) in Tunisia. Afr J Plant Sci Biotechnol 4(2):100–101

    Google Scholar 

Download references

Acknowledgments

This work was supported by Embrapa and the National Council for Scientific and Technological Development (CNPq). We thank the Secretaria de Estado da Produção Rural do Amazonas for the Manaus (Amazonas) occurrence data and the Agência de Defesa Agropecuária de Roraima for assistance with field research in Roraima. We also thank three anonymous reviewers for helpful comments and suggestions on previous drafts of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisangela Gomes Fidelis de Morais.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 141 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amaro, G., de Morais, E.G.F. Potential geographical distribution of the red palm mite in South America. Exp Appl Acarol 60, 343–355 (2013). https://doi.org/10.1007/s10493-012-9651-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-012-9651-9

Keywords

Navigation