Skip to main content

Advertisement

Log in

Proteomic insights into cold adaptation of psychrotrophic and mesophilic Acidithiobacillus ferrooxidans strains

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Cold tolerant strains of Acidithiobacillus ferrooxidans play a role in metal leaching and acid mine drainage (AMD) production in northern latitude/boreal mining environments. In this study we used a proteomics and bioinformatics approach to decipher the proteome changes related to sustained growth at low temperatures to increase our understanding of cold adaptation mechanisms in A. ferrooxidans strains. Changes in protein abundance in response to low temperatures (5 and 15°C) were monitored and protein analyses of a psychrotrophic strain (D6) versus a mesophilic strain (F1) showed that both strains increased levels of 11 stress-related and metabolic proteins including survival protein SurA, trigger factor Tig, and AhpC-Tsa antioxidant proteins. However, a unique set of changes in the proteome of psychrotrophic strain D6 were observed. In particular, the importance of protein fate, membrane transport and structure for psychrotrophic growth were evident with increases in numerous chaperone and transport proteins including GroEL, SecB, ABC transporters and a capsule polysaccharide export protein. We also observed that low temperature iron oxidation coincides with a relative increase in the key iron metabolism protein rusticyanin, which was more highly expressed in strain D6 than in strain F1 at colder growth temperatures. We demonstrate that the psychrotrophic strain uses a global stress response and cold-active metabolism which permit growth of A. ferrooxidans in the extreme AMD environment in colder climates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen RC (1980) Rapid isoelectric focusing and detection of nanogram amounts of proteins from body tissues and fluids. Electrophoresis I:32–37

    Article  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Amaro AM, Chamorro D, Seeger M, Arredondo R, Peirano I, Jerez CA (1991) Effect of external pH perturbations on in vivo protein synthesis by the acidophilic bacterium Thiobacillus ferrooxidans. J Bacteriol 173(2):910–915

    PubMed  CAS  Google Scholar 

  • Amouric A, Brochier-Armanet C, Johnson DB, Bonnefoy V, Hallberg KB (2011) Phylogenetic and genetic variation among Fe(II)-oxidizing acidithiobacilli supports the view that these comprise multiple species with different ferrous iron oxidation pathways. Microbiology 157:111–122

    Article  PubMed  CAS  Google Scholar 

  • Barreto M, Jedlicki E, Holmes DS (2005) Identification of a gene cluster for the formation of extracellular polysaccharide precursors in the chemolithoautotroph Acidithiobacillus ferrooxidans. Appl Environ Microbiol 71(6):2902–2909

    Article  PubMed  CAS  Google Scholar 

  • Beal C, Fonseca F, Corrieu G (2001) Resistance to freezing and frozen storage of Streptococcus thermophilus is related to membrane fatty acid composition. J Dairy Sci 84:2347–2356

    Google Scholar 

  • Bergholz PW, Bakermans C, Tiedje JM (2009) Psychrobacter arcticus 273–4 uses resource efficiency and molecular motion adaptations for subzero temperature growth. J Bacteriol 191:2340–2352

    Article  PubMed  CAS  Google Scholar 

  • Bergman NH, Passalacqua KD, Hanna PC, Qin ZS (2007) Operon prediction for sequenced bacterial genomes without experimental information. Appl Environ Microbiol 73(3):846–854

    Article  PubMed  CAS  Google Scholar 

  • Bittner AN, Foltz A, Oke V (2007) Only one of five groEL genes is required for viability and successful symbiosis in Sinorhizobium meliloti. J Bacteriol 189(5):1884–1889

    Article  PubMed  CAS  Google Scholar 

  • Bouchal P, Zdrahal Z, Helanova S, Janiczek O, Hallberg KB, Mandl M (2006) Proteomic and bioinformatics analysis of iron- and sulfur-oxydizing Acidithiobacillus ferrooxidans using immobilized pH gradient and mass spectrometry. Proteomics 6:4278–4285

    Article  PubMed  CAS  Google Scholar 

  • Cabiscol E, Tamarit J, Ros J (2000) Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol 3:3–8

    PubMed  CAS  Google Scholar 

  • Cascales E, Lloubès R, Sturgis JN (2008) The TolQ-TolR proteins energize TolA and share homologies with the flagellar motor proteins MotA-MotB. Mol Microbiol 42(3):795–807

    Article  Google Scholar 

  • Cases I, Ussery DW, De Lorenzo V (2003) The σ54 regulon (sigmulon) of Pseudomonas putida. Environ Microbiol 5(12):1281–1293

    Article  PubMed  CAS  Google Scholar 

  • Chi A, Valenzuela L, Bears S, Mackey A, Shabanowitz J, Hunt DF, Jerez CA (2007) Periplasmic proteins of the extremophile Acidithiobacillus ferrooxidans. Mol Cell Proteomics 6:2239–2251

    Article  PubMed  CAS  Google Scholar 

  • Cox JC, Boxer DH (1978) The purification and some properties of rusticyanin, a blue copper protein involved in iron (II) oxidation from Thiobacillus ferrooxidans. Biochem J 174:497–502

    PubMed  CAS  Google Scholar 

  • D’Amico S, Collins T, Marx J-C, Feller G, Gerday C (2006) Psychophilic microorganisms: challenges for life. EMBO reports 7(4):385–389

    Article  PubMed  Google Scholar 

  • Dopson M, Halinen A-K, Rahunen N, Ozkaya B, Sahinkaya E, Kaksonen AH, Lindstom EB, Puhakka JA (2007) Mineral and iron oxidation at low temperatures by pure and mixed cultures of acidophilic microorganisms. Biotechnol Bioeng 97(5):1205–1215

    Article  PubMed  CAS  Google Scholar 

  • Fath MJ, Kolter R (1993) ABC transporters: bacterial exporters. Microbiol Rev 57(4):995–1017

    PubMed  CAS  Google Scholar 

  • Felício AP, Garcia O Jr, Bertolini MC, Ottoboni LMM, Novo MTM (2003) The effects of copper ions on the synthesis of periplasmic and membrane proteins in Acidithiobacillus ferrooxidans as analyzed by SDS-PAGE and 2D-PAGE. Hydrometallurgy 71(1–2):165–171

    Article  Google Scholar 

  • Ferroni GD, Leduc LG, Todd M (1986) Isolation and temperature characterization of psychrotrophic strains of Thiobacillus ferrooxidans from the environment of a uranium mine. J Gen App Microbiol 32:169–175

    Article  CAS  Google Scholar 

  • Furuki M, Tanaka N, Hiyama T, Nakamoto H (1996) Cloning, characterization and functional analysis of groEL-like gene from thermophilic cyanobacterium Synechococcus vulcanus, which does not form an operon with groES. Biochim Biophys Acta 1294:106–110

    Article  PubMed  Google Scholar 

  • Gardy JL, Laird MR, Chen F, Rey S, Walsh CJ, Ester M, Brinkman FSL (2005) PSORTb v20: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics 21(5):617–623

    Article  PubMed  CAS  Google Scholar 

  • Haldenwang WG (1995) The sigma factors of Bacillus subtilis. Microbiol Rev 59(1):1–30

    PubMed  CAS  Google Scholar 

  • Hallberg K, Gonzalez-Toril E, Johnson B (2010) Acidithiobacillus ferrivorans sp. nov.; facultatively anaerobic, psychrotolerant iron-, and sulfur-oxidizing acidophiles isolated from metal mine-impacted environments. Extremophiles 14(1):9–19

    Article  PubMed  CAS  Google Scholar 

  • He Z, Hu Y, Zhong H, Hu W, Xu J (2005) Preliminary proteomic analysis of Thiobacillus ferrooxidans growing on elemental sulfur and Fe2+ separately. J Biochem Mol Biol 38(3):307–313

    Article  PubMed  CAS  Google Scholar 

  • Jeamton W, Mungpakdee S, Sirijuntarut M, Prommeenate P, Cheevadhanarak S, Tanticharoen M, Hongsthong A (2008) A combined stress response analysis of Spirulina platensis in terms of global differentially expressed proteins, and mRNA levels and stability of fatty acid biosynthesis genes FEMS. Microbiol Lett 281(2):121–131

    Article  CAS  Google Scholar 

  • Jerez CA, Seeger M, Amaro AM (1992) Phosphate starvation affects the synthesis of outer membrane proteins in Thiobacillus ferrooxidans. FEMS Microbiol Lett 98:29–34

    Article  CAS  Google Scholar 

  • Karavaiko GI, Turova TP, Kondrat’eva TF, Lysenko AM, Kolganova TV, Ageeva SN, Muntyan LN, Pivovarova TA (2003) Phylogenetic heterogeneity of the species Acidithiobacillus ferrooxidans. Int J Syst Evol Microbiol 53:113–119

    Article  PubMed  CAS  Google Scholar 

  • Kramer G, Rutkowska A, Wegrzyn RD, Patzelt H, Kurz TA, Merz F, Rauch T, Vorderwülbecke S, Deuerling E, Bukau B (2004) Functional dissection of Escherichia coli Trigger Factor: Unraveling the function of individual domains. J Bacteriol 186(12):3777–3784

    Article  PubMed  CAS  Google Scholar 

  • Krembs C, Eicken H, Junge K, Deming JW (2002) High concentrations of exopolymeric substances in Arctic winter sea ice: implications for the polar ocean carbon cycle and cryoprotection of diatoms. Deep-Sea Research Part I: Oceanographic Research Papers 49(12):2163–2181

    Article  CAS  Google Scholar 

  • Kthiri F, Le H-T, Tagourti J, Kern R, Malki A, Caldas T, Abdallah J, Landoulsi A, Richarme G (2008) The thioredoxin homolog YbbN functions as a chaperone rather than as an oxidoreductase. Biochem Biophys Res Commun 374(4):668–672

    Article  PubMed  CAS  Google Scholar 

  • Kupka D, Rzhepishevska OI, Dopson M, Lindstrom EB, Karnachuck OV, Tuovinen OH (2007) Bacterial oxidation of ferrous iron at low temperatures. Biotechnol Bioeng 97(6):1470–1478

    Article  PubMed  CAS  Google Scholar 

  • Kvint K, Nachin L, Diez A, Nyström T (2007) The bacterial universal stress protein: function and regulation. Curr Opin Microbiol 6(2):140–145

    Article  Google Scholar 

  • Leduc LG, Trevors JT, Ferroni GD (1993) Thermal characterization of different isolates of Thiobacillus ferrooxidans. FEMS Microbiol Lett 108:189–194

    Article  CAS  Google Scholar 

  • Meth BA, Nelson KE, Deming JW, Momen B, Melamud E, Zhang X (2005) The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acad Sci USA 102(31):10913–10918

    Article  Google Scholar 

  • Mykytczuk NCS, Trevors JT, Leduc LG, Ferroni GD (2007) Fluorescence polarization in studies of bacterial cytoplasmic membrane fluidity under environmental stress. Prog Biophys MolBiol 95:60–82

    Article  CAS  Google Scholar 

  • Mykytczuk NCS, Trevors JT, Twine SM, Ferroni GD, Leduc LG (2010) Membrane fluidity and fatty acid comparisons in psychrotrophic and mesophilic strains of Acidithiobacillus ferrooxidans under cold growth temperatures. Arch Microbiol 192(12):1005–1018

    Article  PubMed  CAS  Google Scholar 

  • Novo MTM, da Silva AC, Moreto R, Cabral PCP, Costacurta A, Garcia O Jr, Ottoboni LMM (2000) Thiobacillus ferrooxidans response to copper and other heavy metals: growth, protein synthesis and protein phosphorylation. Antonie van Leeuwenhoek 77:187–195

    Article  PubMed  CAS  Google Scholar 

  • Novo MTM, da Silva Garcia O, Ottoboni LMM Jr (2003) Protein profile of Acidithiobacillus ferrooxidans strains exhibiting different levels of tolerance to metal sulfates. Curr Microbiol 47:492–496

    Article  PubMed  CAS  Google Scholar 

  • Piette F, D’Amico S, Mazzucchelli G, Danchin A, Leprince P, Feller G (2011) Life in the cold: a proteomic study of cold-repressed proteins in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Appl Environ Microbiol. doi:10.1128/AEM.02757-10

  • Quatrini R, Valdes J, Jedlicki E, Holmes DS (2007) The use of Bioinformatics and genome biology to advance our understanding of bioleaching microorganisms. In: Donati ER, Sand W (eds) Microbial processing of metal sulfides. Springer, New York, NY

    Google Scholar 

  • Raimann E, Schmid B, Stephan R, Tasara T (2009) The alternative sigma factor sigma(L) of L. monocytogenes promotes growth under diverse environmental stresses. Foodborne Pathog Dis 6(5):583–591

    Google Scholar 

  • Ramagli LS (1999) Quantifying protein in 2-D PAGE solubilization buffers. In: Link AJ (ed) Methods in molecular biology, Clifton, NJ, pp 99–103

  • Rodríguez-Quiñones F, Maguire M, Wallington EJ, Gould PS, Yerko V, Downie JA, Lund PA (2005) Two of the three groEL homologues in Rhizobium leguminosarum are dispensable for normal growth. Arch Microbiol 183:253–265

    Article  PubMed  Google Scholar 

  • Sklar JG, Wu T, Kahne D, Silhavy TJ (2007) Defining the roles of the periplasmic chaperones SurA, Skp, and DegP in Escherichia coli. Genes Dev 21(19):2473–2484

    Article  PubMed  CAS  Google Scholar 

  • St Denis LM (2008) Rapid identification of AMD bacteria through 16S rRNA gene sequencing MSc thesis, Laurentian University, Sudbury, Canada

  • Thieringer HA, Jones PA, Inouye M (1998) Cold shock and adaptation. BioEssays 20:49–57

    Article  PubMed  CAS  Google Scholar 

  • Ting L, Williams TJ, Cowley MJ, Lauro FM, Guilhaus M, Raftery MJ, Cavicchioli R (2010) Cold adaptation in the marine bacterium, Sphingopyxis alaskensis, assessed using quantitative proteomics. Environ Microbiol 12(10):2658–2676

    PubMed  CAS  Google Scholar 

  • Tormo A, Almiron M, Kolter R (1990) surA, an Escherichia coli gene essential for survival in stationary phase. J Bacteriol 172:4339–4347

    PubMed  CAS  Google Scholar 

  • Tosco A, Birolo L, Madonna S, Lolli G, Sannia G, Marino G (2003) GroEL from the psychrophilic bacterium Pseudoalteromonas haloplanktis TAC 125: molecular characterization and gene cloning. Extremophiles 7(1):17–28

    PubMed  CAS  Google Scholar 

  • Tuovinen OH, Kelly DP (1973) Studies on the growth of Thiobacillus ferrooxidans, I Use of membrane filters and ferrous iron agar to determine viable numbers, and comparison with 14+CO2-fixation and iron oxidation as measures of growth. Arch Microbiol 88:285–298

    CAS  Google Scholar 

  • Twine SM, Mykytczuk NCS, Petit M, Tremblay T-L, Conlan JW, Kelly JF (2005) Francisella tularensis proteome: low levels of ASB-14 facilitate the visualization of membrane proteins in total protein extracts. J Proteome Res 4(5):1848–1854

    Article  PubMed  CAS  Google Scholar 

  • Twine SM, Mykytczuk NCS, Petit MD, Shen H, Sjöstedt A, Conlan JW, Kelly JF (2006) In vivo proteomic analysis of the intracellular bacterial pathogen, Francisella tularensis, isolated from mouse spleen. Biochem Biophys Res Commun 345(4):1621–1633

    Article  PubMed  CAS  Google Scholar 

  • Twine SM, Paul CJ, Vinogradov E, McNally DJ, Brisson J-R, Mullen JA, McMullin DR, Jarrell HC, Austin JW, Kelly JF, Logan SM (2008) Flagellar glycosylation in Clostridium botulinum. FEBS J 275(17):4428–4444

    Article  PubMed  CAS  Google Scholar 

  • Valdés J, Pedroso I, Quatrini R, Dodson RJ, Tettelin H, Blake II R, Eisen JA, Holmes DS (2008) Acidithiobacillus ferrooxidans metabolism: From genome sequence to industrial applications. BMC Genomics 9, art no. 597. doi:10.1186/1471-2164-9-597

  • Valenzuela L, Chi A, Beard S, Orell A, Guiliani N, Shabanowitz J, Hunt DF, Jarez CA (2006) Genomics, metagenomics and proteomics in biomining microorganisms. Biotechnol Adv 24:197–211

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Delettre J, Guillot A, Corrieu G, Béal C (2005) Influence of cooling temperature and duration on cold adaptation of Lactobacillus acidophilus RD758. Cryobiology 50(3):294–307

    Google Scholar 

  • Wiegeshoff F, Beckering CL, Debarbouille M, Marahiel MA (2006) Sigma L is important for cold shock adaptation of Bacillus subtilis. J Bacteriol 188(8):3130–3133

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka K (1999) Cold shock response in Escherichia coli. J Mol Microbiol and Biotechnol 1(2):193–202

    CAS  Google Scholar 

  • Yarzábal A, Appia-Ayme C, Ratouchniak J, Bonnefoy V (2004) Regulation of the expression of the Acidithiobacillus ferrooxidans rus operon encoding two cytochromes c, a cytochrome oxidase and rusticyanin. Microbiology 150:2113–2123

    Article  PubMed  Google Scholar 

  • Yoshimune K, Galkin A, Kulakova L, Yoshimura T, Esaki N (2005) Cold-active DnaK of an Antarctic psychrotroph Shewanella sp Ac10 supporting the growth of dnaK-null mutant of Escherichia coli at cold temperatures. Extremophiles 9(2):145–150

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Mireille Petit for additional support in the proteomic work and Luc Tessier for assistance with mass spectrometry instrumentation. This research is supported by Natural Sciences and Engineering Research Council of Canada (NSERC) through a Discovery grant held by LGL and GDF, a Canadian Graduate Scholarship awarded to NCSM, and the National Research Council of Canada. We also gratefully acknowledge the infrastructure support from the Canada Foundation for Innovation (CFI), the Ontario Challenge Fund (OCF) and the Northern Ontario School of Medicine (NOSM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia C. S. Mykytczuk.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4159 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mykytczuk, N.C.S., Trevors, J.T., Foote, S.J. et al. Proteomic insights into cold adaptation of psychrotrophic and mesophilic Acidithiobacillus ferrooxidans strains. Antonie van Leeuwenhoek 100, 259–277 (2011). https://doi.org/10.1007/s10482-011-9584-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-011-9584-z

Keywords

Navigation