Skip to main content
Log in

Properties of functions with monotone graphs

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

A metric space (X,d) is monotone if there is a linear order < on X and a constant c>0 such that d(x,y)≦cd(x,z) for all x<y<zX. Properties of continuous functions with monotone graph (considered as a planar set) are investigated. It is shown, for example, that such a function can be almost nowhere differentiable, but must be differentiable at a dense set, and that the Hausdorff dimension of the graph of such a function is 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Alberti, M. Csörnyei, M. Laczkovich and D. Preiss, Denjoy–Young–Saks theorem for approximate derivatives revisited, Real Anal. Exchange, 26 (2000/01), 485–488, MR 1825530 (2002c:26007).

    MathSciNet  Google Scholar 

  2. P. C. Allaart and K. Kawamura, The Takagi function: a survey (2011) (arXiv: 1110.1691v2).

  3. S. Eilenberg, Ordered topological spaces, Amer. J. Math., 63 (1941), 39–45, MR 0003201 (2,179e).

    Article  MathSciNet  Google Scholar 

  4. K. J. Falconer, Fractal Geometry: Mathematical Foundations and Applications, John Wiley & Sons Ltd. (Chichester, 1990), MR 1102677 (92j:28008).

    MATH  Google Scholar 

  5. E. Hewitt and K. Stromberg, Real and Abstract Analysis. A Modern Treatment of the Theory of Functions of a Real Variable, Springer-Verlag (New York, 1965), MR 0188387 (32 #5826).

    MATH  Google Scholar 

  6. M. Hrušák and O. Zindulka, Cardinal invariants of monotone and porous sets, J. Symbolic Logic, 77 (2012), 159–173, MR 2951635.

    Article  MATH  MathSciNet  Google Scholar 

  7. T. Keleti, A. Máthé and O. Zindulka, Hausdorff dimension of metric spaces and Lipschitz maps onto cubes, Int. Math. Res. Notices, to appear.

  8. P. Mattila, Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability, Cambridge Studies in Advanced Mathematics 44, Cambridge University Press (Cambridge, 1995), MR 1333890.

    Book  MATH  Google Scholar 

  9. A. Nekvinda and O. Zindulka, A Cantor set in the plane that is not σ-monotone, Fund. Math., 213 (2011), 221–232, MR 2822419 (2012f:54055).

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Nekvinda and O. Zindulka, Monotone metric spaces, Order, 29 (2012), 545–558, MR 2979649.

    Article  MATH  MathSciNet  Google Scholar 

  11. S. Saks, Theory of the Integral, 2nd revised ed., english translation by L. C. Young, with two additional notes by Stefan Banach, Dover Publications Inc. (New York, 1964), MR 0167578 (29 #4850).

    MATH  Google Scholar 

  12. L. Zajíček, Porosity and σ-porosity, Real Anal. Exchange, 13 (1987/88), 314–350, MR 943561.

    MathSciNet  Google Scholar 

  13. L. Zajíček, On σ-porous sets in abstract spaces, Abstr. Appl. Anal. (2005), 509–534, MR 2201041.

  14. M. Zelený, An absolutely continuous function with non-σ-porous graph, Real Anal. Exchange, 30 (2004/05), 547–563, MR 2177418.

    MathSciNet  Google Scholar 

  15. O. Zindulka, Universal measure zero, large Hausdorff dimension, and nearly Lipschitz maps, Fund. Math., 218 (2012), 95–119, MR 2957686.

    Article  MATH  MathSciNet  Google Scholar 

  16. O. Zindulka, Fractal properties of monotone spaces and sets, in preparation.

  17. O. Zindulka, Mapping Borel sets onto balls and self-similar sets by Lipschitz and nearly Lipschitz maps, in preparation.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondřej Zindulka.

Additional information

Some of the work on this project was conducted during O. Zindulka’s sabbatical stay at the Instituto de matemáticas, Unidad Morelia, Universidad Nacional Autonóma de México supported by CONACyT grant no. 125108. M. Hrušák gratefully acknowledges support from PAPIIT grant IN101608 and CONACYT grant 80355. A. Nekvinda was supported by MSM 6840770010 and the grant 201/08/0383 of the Grant Agency of the Czech Republic. V. Vlasák was supported by the grant 22308/B-MAT/MFF of the Grant Agency of the Charles University in Prague and by grant 201/09/0067 of the Grant Agency of the Czech Republic. He is a junior researcher in the University Centre for Mathematical Modelling, Applied Analysis and Computational Mathematics (Math MAC). Sections 1, 2, 3, 4, 6 and 8 are due to Zindulka, except 2.2 (Mátrai), 2.3 (Mátrai and Vlasák) and 4.1 (Nekvinda); Section 5 is due to Mátrai and Vlasák; Section 7 is due to Hrušák and Zindulka.

Corresponding author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hrušák, M., Mátrai, T., Nekvinda, A. et al. Properties of functions with monotone graphs. Acta Math Hung 142, 1–30 (2014). https://doi.org/10.1007/s10474-013-0367-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-013-0367-z

Key words and phrases

Mathematics Subject Classification

Navigation