Skip to main content
Log in

The Gauss–Wilson theorem for quarter-intervals

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

We define a Gauss factorial N n ! to be the product of all positive integers up to N that are relatively prime to n. It is the purpose of this paper to study the multiplicative orders of the Gauss factorials \(\left\lfloor\frac{n-1}{4}\right\rfloor_{n}!\) for odd positive integers n. The case where n has exactly one prime factor of the form p≡1(mod4) is of particular interest, as will be explained in the introduction. A fundamental role is played by p with the property that the order of \(\frac{p-1}{4}!\) modulo p is a power of 2; because of their connection to two different results of Gauss we call them Gauss primes. Our main result is a complete characterization in terms of Gauss primes of those n of the above form that satisfy \(\left\lfloor\frac{n-1}{4}\right\rfloor_{n}!\equiv 1\pmod{n}\). We also report on computations that were required in the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. C. Berndt, R. J. Evans and K. S. Williams, Gauss and Jacobi Sums, Wiley (New York, 1998).

    MATH  Google Scholar 

  2. J. B. Cosgrave and K. Dilcher, Extensions of the Gauss–Wilson theorem, Integers, 8 (2008), A39, available at http://www.integers-ejcnt.org/vol8.html.

  3. J. B. Cosgrave and K. Dilcher, Mod p 3 analogues of theorems of Gauss and Jacobi on binomial coefficients, Acta Arith., 142 (2010), 103–118.

    Article  MATH  MathSciNet  Google Scholar 

  4. J. B. Cosgrave and K. Dilcher, The multiplicative orders of certain Gauss factorials, Int. J. Number Theory, 7 (2011), 145–171.

    Article  MATH  MathSciNet  Google Scholar 

  5. J. B. Cosgrave and K. Dilcher, An introduction to Gauss factorials, Amer. Math. Monthly, 118 (2011), 810–828.

    MathSciNet  Google Scholar 

  6. J. B. Cosgrave and K. Dilcher, The multiplicative orders of certain Gauss factorials, II, in preparation.

  7. R. E. Crandall, A general purpose factoring program. Perfectly Scientific – the algorithm company, available from http://www.perfsci.com/free-software.asp.

  8. L. E. Dickson, History of the Theory of Numbers. Volume I: Divisibility and Primality, Chelsea (New York, 1966).

    Google Scholar 

  9. P. Gaudry, A. Kruppa, F. Morain, L. Muller, E. Thomé and P. Zimmermann, cado-nfs, An Implementation of the Number Field Sieve Algorithm. Release 1.0, available from http://cado-nfs.gforge.inria.fr/.

  10. H. W. Gould, Combinatorial Identities, revised ed., Gould Publications (Morgantown, W.Va, 1972).

    MATH  Google Scholar 

  11. D. H. Lehmer, The distribution of totatives, Canad. J. Math., 7 (1955), 347–357.

    Article  MATH  MathSciNet  Google Scholar 

  12. L. J. Mordell, The congruence (p−1/2)!≡±1(modp), Amer. Math. Monthly, 68 (1961), 145–146.

    Article  MATH  MathSciNet  Google Scholar 

  13. F. Morain, Private communication (2006).

  14. I. Niven, H. S. Zuckerman and H. L. Montgomery, An Introduction to the Theory of Numbers, 5th ed., Wiley (1991).

    Google Scholar 

  15. The On-Line Encyclopedia of Integer Sequences, http://oeis.org/.

  16. P. Ribenboim, The Little Book of Bigger Primes, 2nd ed., Springer-Verlag (New York, 2004).

    MATH  Google Scholar 

  17. E. W. Weisstein, Lucas Sequence. From MathWorld – A Wolfram Web Resource, http://mathworld.wolfram.com/LucasSequence.html.

  18. H. C. Williams, Édouard Lucas and Primality Testing, Wiley (1998).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Dilcher.

Additional information

Corresponding author. Research supported in part by the Natural Sciences and Engineering Research Council of Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cosgrave, J.B., Dilcher, K. The Gauss–Wilson theorem for quarter-intervals. Acta Math Hung 142, 199–230 (2014). https://doi.org/10.1007/s10474-013-0357-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-013-0357-1

Key words and phrases

Mathematics Subject Classification

Navigation